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Abstract

This paper studies the trade-offs in healthcare capacity between access to

care and supplier-induced demand. We develop a novel economic model where

admission/discharge decisions of healthcare facilities depend on bed occupancy

through capacity constraints and demand inducements. We show that the rel-

ative importance of the two mechanisms is testable using admission/discharge

responses to occupancy fluctuations under different baseline occupancies. Ap-

plying the framework to Japanese nursing facilities, with patient deaths as oc-

cupancy shocks, we find that short-run admission decisions are mainly driven

by capacity constraints. We discuss the assignment of healthcare capacity to

improve access while preventing supplier-induced demand.
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1 Introduction

The efficient delivery of goods and services under capacity constraints is a central issue

in economics. In many markets, such as health care, housing, and transportation, gov-

ernments regulate supply capacity for various reasons, including reducing unnecessary

services and public spending, managing externalities, and ensuring comfort and safety.

However, such regulations can tighten the capacity constraints faced by suppliers, hin-

der valuable market transactions, and lead to shortages of essential goods and services.

Striking a balance in supply capacity trade-offs is a common policy challenge across

many sectors.

In this paper, we study the trade-offs in healthcare capacity between access to

care and demand inducements. The imposition of capacity constraints on healthcare

providers has been justified by concerns about supplier-induced demand: providers may

use excess capacity for patients with low medical needs to increase revenues. More

recently, researchers have begun to focus on the negative side of capacity constraints,

such as congestion costs: productivity and accessibility in healthcare may decrease when

providers are congested. The existing literature is limited because the positive and neg-

ative aspects of capacity constraints are analyzed separately, and their trade-offs are

not examined in a unified manner. Understanding the trade-offs is essential for deter-

mining how to allocate healthcare capacity to increase necessary care while reducing

unnecessary care. We fill these gaps and explore how to manage supply capacity in the

healthcare sector.

Specifically, we focus on nursing facilities and analyze how bed occupancy affects their

admission and discharge decisions. In inpatient care, bed occupancy is a key measure

of capacity utilization and capacity constraints, and the number of (newly) treated

patients measures access to health care (Alexander and Schnell, 2024) and production

quantity (Grieco and McDevitt, 2017).1 The increased demand for nursing facility care

has raised concerns among policymakers and academics about the accessibility of nursing

facilities. Recent studies find evidence that facilities engage in selective admissions (He

and Konetzka, 2015; Gandhi, 2023; Corredor-Waldron, 2022) and discharges (Hackmann

et al., 2024) when bed supply is limited. However, increasing capacity may or may not

be a desirable policy, depending on the relative importance of capacity constraints and

1Admissions and discharges also measure bed turnover, another important policy target.
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provider incentives to induce demand.

To provide a unified framework for assessing the role of capacity utilization, we build

a novel economic model that shows how a facility’s admission and discharge decisions

depend on bed occupancy. In the model, the marginal cost of serving an additional pa-

tient2 increases with occupancy, possibly reflecting the altruistic facility’s concern about

quality deterioration or reduced motivations of workers, as well as monetary costs such

as diminishing returns and higher input costs. The model also allows for (loose) income

targeting or occupancy targeting, which incentivizes the facility to induce demand in

response to a reduction in occupancy. In addition, the facility incurs admission and

discharge costs, which represent frictions in adjusting patient volume in the short run.

The model predicts that the facility will respond to an exogenous decrease in oc-

cupancy by increasing admissions and decreasing discharges. The responses are driven

by two mechanisms. First, an income effect incentivizes the facility to increase admis-

sions to compensate for lost revenue. Second, a cost effect allows the facility to increase

admissions by reducing the marginal cost of service. The magnitude of the responses

depends on admission and discharge frictions. In a frictionless case, the facility adjusts

the net admissions to exactly offset the occupancy reduction. In contrast, in a frictional

case, it only partially offsets the occupancy shock. This suggests that an occupancy

shock has a persistent effect on the facility’s admissions, discharges, and occupancy.

The model also guides us how to empirically assess the relative importance of the

mechanisms. If the variation in the cost (income) effect mainly explains the variation

in the admission/discharge responses at different levels of baseline occupancy, then the

responses will be more (less) intense at higher occupancy levels. Moreover, we can

place some bounds on the levels of the two effects at any occupancy, using empirically

observable quantities. Disentangling these mechanisms is crucial for policy discussions.

Previous studies on supplier-induced demand (Gruber and Owings, 1996; Ikegami et al.,

2021), which emphasize the income effect as the driver of care provision under loose

capacity constraints, would imply that lowering occupancy may induce wasteful care

provision. In contrast, if the cost effect is a key driver, then relaxing capacity constraints

can increase valuable care provision.

To test the theoretical predictions, we need exogenous shocks to the occupancy rate.

A regression of admissions on occupancy does not necessarily yield the causal effect of

2We use the term “patients” to refer to the people who use nursing facility services.
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occupancy, because occupancy may be affected by unobserved (pre-determined) qual-

ity3 or operational efficiencies that also affect admissions. We address this problem by

exploiting patient deaths as exogenous occupancy shocks.4 The identification assump-

tions are that the exact timing of patient deaths (but not necessarily the longer-run

volume of deaths) is exogenous to confounding factors related to the facility’s daily

admission/discharge decisions and other patients’ preferences, and that patient deaths

affect admissions and live discharges only via occupancy. These assumptions are plau-

sible in our setting because (i) nursing facilities do not have advanced technologies to

manipulate the timing of patient deaths, (ii) applicants or in-facility patients are un-

likely to respond quickly to daily patient deaths, and (iii) the extra work of staff due to

deaths and the facility-level health shock seem irrelevant. We also show the absence of

a pre-trend in admissions or discharges in an event study design.

We empirically test the above theoretical predictions in the context of Japanese nurs-

ing facilities for rehabilitation and transitional care, similar to skilled nursing facilities

(SNFs) in the US. Japan has the highest rate of population aging in the world (United

Nations, 2019), and nursing facilities play an important role in the long-term care of

the elderly. The high demand for institutional care is reflected in high occupancy rates,

which creates a congestion problem because staffing cannot be adjusted flexibly. The

simple reimbursement system based on a per-diem payment adjusted to care needs al-

lows us to focus on bed management decisions rather than the content of care, without

much concern about facilities picking profitable patients. We construct facility-by-date

panel data on bed occupancy and the number of admissions, discharges, and deaths. We

first implement an event study design to examine the effect of exogenous discharges due

to patient deaths on admissions and discharges, investigating detailed dynamic effects.

We then estimate regressions of weekly/monthly/quarterly admissions and discharges

on daily occupancy, using patient deaths as an instrumental variable (IV).

We find that patient deaths immediately increase subsequent admissions, whereas

they have a much weaker effect on live discharges. Admissions increase as early as the

3Facilities’ quality consists of two components: (i) quality that is affected by occupancy (e.g., care
intensity) and (ii) quality that is determined prior to occupancy (e.g., staff skills or technologies).
Because we isolate the effect of occupancy, endogeneity concerns arise from the latter.

4People’s deaths have been exploited as an exogenous variation in several settings, such as fatal
shocks to family members (Fadlon and Nielsen, 2021), worker or executive exit from a firm (Jäger and
Heining, 2024; Sauvagnat and Schivardi, 2023), entrepreneur exit from a start-up company (Becker and
Hvide, 2022), changes in collaborative networks of inventors (Jaravel et al., 2018), changes in national
leaders (Jones and Olken, 2005), and changes in academic co-authorship (Azoulay et al., 2010).
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day after patient deaths, and the increase persists for about a month. The IV regressions

imply that a 1pp decrease in the daily occupancy rate increases admissions by 0.64pp and

decreases discharges by 0.21pp over the next 12 weeks, implying that 84% (=64%+21%,

with rounding) of the vacated beds are filled. Based on our model, the results suggest

that both admissions and discharges are frictional, with discharge frictions being much

greater. In addition, the admission responses to a 1pp occupancy reduction is greater

at higher occupancy levels, suggesting that the cost effect rather than the income effect

is the main driver of the responses. Our baseline estimates imply that at least 72.4% of

the 1-week admission response at baseline occupancy strictly between 95% and 100% is

explained by the cost effect (0.21pp out of 0.29pp). We find similar patterns when we

instrument for the baseline occupancy level, in addition to the local occupancy variation

around the baseline. Also, the response size increases with baseline occupancy broadly,

not just near 100%, suggesting that some fraction of the response is due to increasing

marginal costs rather than the mechanical effect of binding capacity constraints.

Our conceptual framework and empirical results provide insights on the assignment

of healthcare capacity. Without our analysis, the policymaker could conclude that as-

signing additional capacity would lead to wasteful demand inducements and therefore

capacity should not be expanded, an idea frequently referenced to justify Certificate-of-

Need (CON) laws in the U.S. and other capacity regulations. In contrast, our analysis

suggests that expanding capacity can increase relatively beneficial admissions by relaxing

supply constraints, especially at high-occupancy facilities, suggesting that such facilities

should be prioritized for additional capacity assignment. Although further analysis is

needed to inform broader policy issues, such as the optimal level of capacity in a market

(not just where capacity assignment should be prioritized), our analysis can provide a

stepping stone for addressing such important issues.

This study relates to the growing literature on the effect of occupancy on admission

and discharge decisions. Provider incentives for selective admissions have been stud-

ied in various settings such as nursing facilities (He and Konetzka, 2015; Gandhi, 2023;

Corredor-Waldron, 2022), inpatient wards (Dong et al., 2020), ICUs (Kim et al., 2015),

NICUs (Freedman, 2016), and neurology wards (Samiedaluie et al., 2017). Hackmann

et al. (2024) find that Medicaid patients (who are less profitable than privately funded

patients) are more likely to be discharged from SNFs when occupancy is higher. We

contribute to the literature by conceptualizing and examining the mechanisms by which
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occupancy affects admissions and discharges. In particular, unlike previous studies that

emphasize supplier-induced demand and other financial incentives (e.g., Evans, 1974;

Gruber and Owings, 1996; Freedman, 2016; Ikegami et al., 2021), we show that capacity

constraints can be a key mechanism in our context. Our findings emphasize the im-

portance of considering two competing mechanisms, capacity constraints and demand

inducement, when analyzing the behavior of healthcare providers and healthcare policy

in general.

This study also contributes to the literature on the effect of policies on access to

health care. The relationship between provider incentives and healthcare access has been

studied extensively in the context of the US Medicaid, a public insurance program for

low-income population (Baker and Royalty, 2000; Decker, 2007, 2009; Buchmueller et al.,

2015; Gandhi, 2023; Alexander and Schnell, 2024; Cabral et al., 2024). Previous studies

have emphasized the importance of expanding capacity as a tool to improve access

(Gandhi, 2023). Our contribution is to analyze the trade-offs in expanding capacity

between access to care and supplier-induced demand.5 Our analysis is informative of

which facilities or markets are likely to benefit from additional healthcare capacity by

improving access while suppressing supplier-induced demand. In this sense, our study

also contributes to the discussions of place-based policies (Kline and Moretti, 2014) for

improving healthcare access.

Finally, this study contributes to the broad literature on how demand fluctuations

combined with capacity constraints and congestion costs affect productivity (Baker et al.,

2004; Collard-Wexler, 2013; Butters, 2020; Boehm and Pandalai-Nayar, 2022; Ilzetzki,

2024). Collard-Wexler (2013) simulates that smoothing demand fluctuations for ready-

mix concrete expands the market due to congestion costs for delivering concrete. Butters

(2020) finds that variation in demand volatility explains a large fraction of variation

in hotel occupancy rates, and that eliminating the demand volatility would increase

productivity. Boehm and Pandalai-Nayar (2022) study how aggregate supply curves of

the manufacturing industries are convex due to micro-level capacity constraints. These

results suggest that additional capacity is potentially valuable at high capacity utilization

rate. On the other hand, another strand of literature studies excess capacity, in particular

5We emphasize the supply-side trade-off between eased capacity constraints and supplier-induced
demand. This issue is related to but different from the issue of how to distinguish supplier-induced
demand from patient-induced demand (e.g., due to shorter distance to physicians under higher physician
density), a major issue in the literature on supplier-induced demand. Our research design allows us to
minimize the effects of demand shocks and to focus on the supply side.
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in declining industries (e.g., Takahashi, 2015; Nishiwaki, 2016; Okazaki et al., 2022). Our

study provides a unified framework to study one type of trade-offs in capacity expansion,

namely improving access (productivity) vs. inducing demand (due to extra capacity).

This paper is organized as follows. Section 2 provides institutional background on

our empirical analysis. In Section 3, we present a conceptual framework. Section 4

describes our data. Section 5 presents the empirical strategy. Section 6 reports the

estimation results. In Section 7, we discuss the policy implications of our results. Section

8 concludes.

2 Institutional Background

2.1 Nursing Facility Industry in Japan

We study nursing facilities in Japan, which are financed by the public long-term care in-

surance (LTCI). Japan’s LTCI is a social insurance program for people over the age of 65

who require long-term care (LTC) services.6 Eligibility for LTCI benefits is determined

by an in-person health examination. The health examination evaluates the applicant’s

physical and mental disabilities and calculates a health score that indicates the appli-

cant’s level of care needs. Applicants are eligible for LTCI benefits if their health score

is above a minimum threshold. Eligible LTCI beneficiaries can use various LTC services,

including both home and institutional care, at a coinsurance rate. Because of the rapid

aging of the population, public spending on LTCI continues to increase. The total an-

nual cost of LTCI was 11.5 trillion JPY in fiscal 2023 (1.94% of Japan’s nominal GDP)

(Ministry of Health, Labor and Welfare, 2023b). Institutional care, including nursing

facilities, accounts for about one-third of total costs.

We focus on a type of nursing facilities called Geriatric Health Services Facilities

(GHSFs).7 Their primary goal is to provide high-quality inpatient rehabilitation and

transitional care to LTCI beneficiaries and to restore their physical abilities to the point

where they can live at home or in the community.8 Thus, they are similar in their mission

to the U.S. Skilled Nursing Facilities (SNFs). Unlike most SNFs, however, GHSFs are

6People aged 45 to 64 who suffer from a government-designated disease are also eligible for LTCI
benefits.

7They are called “Kaigo Roujin Hoken Shisetsu” or “Roken” for short in Japanese.
8According to Japan Association of Geriatric Health Services Facilities (2015), GHSFs’ motto is to

“improve the user’s function to enable them to go back home”.
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non-profit organizations: they may earn a profit to keep their facilities afloat and fulfill

their public purpose, but they are not allowed to distribute the profit to shareholders

or other parties. The establishment of a GHSF and changes to its bed capacity require

the approval of the prefectural governor. As of April 2022, there were 4,230 GHSFs

nationwide, with approximately 355,900 patients admitted (Ministry of Health, Labor

and Welfare, 2023a).

GHSFs provide care for two types of patients. “Long-stay” patients are admitted to

the facility for rehabilitative care to return to the community. “Short-stay” patients,

on the other hand, visit GHSFs to receive temporary assisted living services, typically

for a respite or temporary unavailability of family caregivers. Stay types are identified

by claims items rather than by length of stay. In our empirical analysis, we primarily

focus on the admissions and live discharges of the long-stay patients, because short-stay

admissions and discharges are more likely to be influenced by exogenous factors.9

A variety of healthcare professionals work in GHSFs to provide appropriate care,

including physicians, nurses, care staffs, physiotherapists, and social workers. The supply

of care workers is not keeping pace with the increasing demand for care due to the

rapid aging of the population. As a result, nursing facilities, including GHSFs, are

facing shortages of care workers. According to Care Work Foundation (2016), 62.6% of

facilities reported being understaffed, and 73.1% of the understaffed facilities reported

recruitment difficulties as the main reason for staff shortages.10

2.2 Admission, Treatment, and Discharge

To be admitted to a GHSF, LTCI beneficiaries must apply for admission to the facility,

in consultation with physicians and social workers, and must meet several conditions.

Upon receipt of the application, the facility interviews the applicant to ascertain their

physical condition, living arrangements, and medical needs. Because GHSFs cannot

provide acute medical care, patients must be in a stable condition. The facility decides

whether to admit the patient based on the interview and documentation, such as a

9Many short stays are due to a planned absence of a family caregiver, the timing of which is likely to
be fixed in advance, while many others are due to a family caregiver’s emergency, in which case facilities
will find it difficult to reject the application (Ministry of Health, Labor and Welfare, 2017). The timing
of short-stay discharges is also influenced by the restrictions on the lengths of short stays.

10Low wages (57.3%) and demanding jobs (49.6%) were major cited reasons for recruitment difficul-
ties. Because revenue from services is capped by government-set reimbursement rates, facilities do not
have the flexibility to raise wages by increasing service prices.
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medical certificate.

GHSFs provide rehabilitative care according to each patient’s care plan. In the early

stages of inpatient care, a care plan is developed based on the patient’s goals. The care

plan is reviewed periodically as treatment progresses.

When a patient is ready for discharge, the facility plans their discharge in consultation

with the patient and their family. They work together to prepare the patient’s post-

discharge living environment, including the LTC services to be used at home. Patients

who wish to live outside the current facility are discharged either to their home or to a

nursing home where they can remain for the rest of their lives. If patients require acute

care, they may be transferred to a hospital or, depending on their medical condition, to

another GHSF.

GHSFs also provide end-of-life care for patients who choose to spend their final days

in the facility. End-of-life care is provided to relieve pain, suffering, and stress for patients

so that they can maintain human dignity until the end of life. End-of-life care at GHSFs

includes pain relief through medication, prevention of bedsores, and psychological care

to reduce anxiety and fear.

2.3 Reimbursement Policy

Reimbursement for GHSFs depends on the beneficiaries’ care needs. Beneficiaries are

assigned to one of seven groups based on the health score mentioned in Section 2.1. The

groups consist of support levels 1 and 2, and care levels 1–5 in ascending order of care-

needs levels (i.e., care level 5 means the highest needs). Appendix Table A1 describes

the general health status for each care level. Only recipients classified as care level 1–5

may be admitted to a GHSF.

GHSF reimbursement consists of two components: a per-diem fixed payment and a

fee-for-service (FFS) payment. The fixed payment is paid to the facility for a patient’s

stay for one day, regardless of the content of care. To reflect the burden of care, the

amount of the per-diem payment is set higher for higher care levels. The FFS payment

is paid for specific medical procedures, such as short-term intensive rehabilitation, de-

mentia care, and end-of-life care. Appendix Table A2 shows per-diem fixed and FFS

payments by care levels, using our analysis sample described in Section 4.11 The fixed

11Since we can only observe each patient’s FFS payment at the monthly level, the daily averages of
the FFS payment are calculated by dividing the patient’s total FFS payment by the number of days in
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payment accounts for roughly 90% of the total reimbursement for GHSFs for serving

long-stay patients. Thus, bed occupancy is more important to the facilities’ revenue

than the content of the care provided to long-stay patients.

Summary. The Japanese GHSF is an attractive setting for empirical analysis, because of

its economic importance and its reimbursement system which mitigates concerns about

patient selection. The institutional characteristics also guide our modeling: (1) The non-

profit facilities may be concerned with securing profits, but not with excess profits. They

are also concerned with patient welfare. (2) The numbers of admissions and discharges

are main choice variables, not which patients or which services to select. (3) Service

delivery is negatively affected by congestion, partly due to labor shortages.

3 Conceptual Framework

To guide our empirical analysis, we present an economic model of a facility’s admis-

sion and discharge decisions. The model captures two competing mechanisms, capacity

constraints (congestion) and demand inducements, and generates testable predictions

regarding their relative importance.

3.1 Model Setup

A representative facility chooses the number of new patients to admit, a, and the number

of in-facility patients to discharge, d, to maximize its objective function given the number

of patients currently in the facility, n. We fix capacity12 and express each variable as a

ratio to capacity (e.g., n denotes occupancy rate).13 The utility of the facility is

U (n, a, d) = V (rp)︸ ︷︷ ︸
income utility

+ bPp− CP (p)︸ ︷︷ ︸
service utility

+ bAa− CA(a)︸ ︷︷ ︸
admission utility

+ bDd− CD(d)︸ ︷︷ ︸
discharge utility

, (1)

where p = n+ a− d is the occupancy rate after admissions and discharges are realized,

and r (constant) is the per-patient reimbursement rate net of marginal costs.

The first term represents utility from gross profit rp, converted by V which may

the facility. See the tablenote of Appendix Table A2 for more details.
12This is for ease of exposition; our framework is applicable to study capacity changes.
13The parameters in Eq.(1) must be rescaled accordingly.
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capture fixed costs (e.g., V (R) = R − FC). V satisfies V ′(·) > 0, V ′′(·) ≤ 0, and

V ′′′(·) ≥ 0.14 We allow V to express loose income targeting, e.g., an approximate non-

negativity constraint on profit.15 An income effect, including literal income targeting

as a limit case, is a common way to explain supplier-induced demand (McGuire and

Pauly, 1991; Gruber and Owings, 1996), and a highly concave utility function is a way

to express a large income effect (see also Camerer et al., 1997). In our context, the non-

profit facility may strongly desire to avoid operating in the red, while it may care less

about excess profit. Alternatively, it may target an occupancy level, and the incentive

to induce demand may increase if occupancy falls below the target level.

Following the literature on non-profit organizations (Lakdawalla and Philipson, 1998;

Gaynor and Vogt, 2003), we assume that the facility’s utility depends on its output. The

second term of Eq.(1) represents the altruistic utility derived from serving p patients.

bP ≥ 0 denotes the benchmark per-patient utility from service and CP (p) denotes a

strictly convex “congestion cost” that satisfies CP ′′′ ≥ 0.16 Per-patient utility declines

steeply as the number of patients increases, possibly for the following reasons. First, con-

gestion may reduce per-patient utility by lowering service quality, e.g., by reducing the

amount of time workers spend with each patient (Shurtz et al., 2022) and other inputs.

Second, congestion may harm the altruistic motivations of workers who aim to provide

good care. Third, CP may approximate the capacity constraint (i.e., CP (1) = +∞), if

it increases rapidly as occupancy approaches capacity.17 Finally, with an appropriate

reinterpretation of r, CP may capture the monetary cost of service that increases non-

linearly with volume.18 Increasing marginal costs can result from diminishing marginal

product of inputs or higher labor costs (e.g., higher overtime pay).

14V ′′′ ≥ 0 implies that the income effect (defined below) shrinks with occupancy. The condition holds
for common candidates for V , e.g., a CARA utility function, a CRRA utility function, and V (R) = Rk

for k ∈ (0, 1). A nonnegative third derivative of utility function is also common in consumption models,
to derive the concavity of the consumption function (e.g., Carroll and Kimball, 1996).

15E.g., V (R) = v(R − FC) for some concave v and a fixed cost FC, where v′(R̃) is high at R̃ < 0
and low at R̃ > 0.

16CP ′′′ ≥ 0 expresses that an increase in congestion increases the marginal cost more at higher
occupancy, and it implies that the cost effect (defined below) increases with occupancy. The condition
holds for common candidates for CP , such as the exponential function and CP (p) = pk for k ≥ 2.

17In reality, occupancy rates may exceed one, possibly due to the temporary use of a makeshift bed.
Our model can capture this possibility by adopting a cost function that takes large finite values at
occupancy above one.

18E.g., if V (R) = R − FC where R = rp is revenue, then the first two terms of (1) become the sum
of profit rp−CP (p)−FC and altruistic utility bP p. Alternatively, V (R) may be concave in revenue R
due to revenue targeting, with CP (p) capturing all variable costs.
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The last two terms of Eq.(1) represent the utility derived from achieving the admis-

sion and discharge missions. The facility’s mission is to provide access to quality care for

anyone in need and return them to their home. We capture the facility’s desire to achieve

this objective by including additional terms to the utility. bAa − CA(a) represents the

utility derived from quality-adjusted admissions, where bA ≥ 0 is the benchmark utility

per admission (in addition to bP ) and CA is weakly convex and captures the reduction

in quality due to higher admission volumes (e.g., poor performance in assessing patient

needs or coordinating the admission process). Similarly, bDd − CD(d) represents the

utility from quality-adjusted discharges, where bD ≥ 0 and CD is weakly convex. CA

and CD may also reflect monetary cost.19

The facility’s decision problem is

max
a≥0,d∈[0,n]

U(n, a, d). (2)

We treat n, a and d as continuous variables. We assume that problem (2) has an interior

solution (a∗, d∗) = (a∗(n), d∗(n)) that satisfies the first-order conditions, and that the

resulting occupancy rate is also interior.

3.2 Theoretical Prediction

We examine how the admissions and discharges (a∗, d∗) respond to a decrease in oc-

cupancy n, which can also be interpreted as an increase in capacity.20 Denote the

optimal admissions and discharges at n = n̄ by ā = a∗(n̄) and d̄ = d∗(n̄), and let

p̄ = n̄ + ā − d̄. Also, denote the marginal cost by MCg(·) for g = P,A,D, and let

MBA(p) = rV ′(rp) + bP + bA denote the marginal benefit of admission. We simplify

by assuming that the admission and discharge cost functions are weakly quadratic:

MCA(a) = κA
1 + κA

2 a and MCD(d) = κD
1 + κD

2 d, with κA
1 , κ

A
2 , κ

D
1 , κ

D
2 ≥ 0. No assump-

tion is imposed on MCP or MBA, except that MBA is weakly decreasing and MCP is

strictly increasing.21

19Admission cost may reflect the cost of assessing patients’ needs, coordinating the admission process,
and moving patients to the facility. Discharge cost may consist of similar factors. These costs are likely
to increase more rapidly as the volume increases, for example, due to higher labor costs of workers in
charge of discharges.

20Here, “capacity” consists of both equipment (e.g., beds) and staffing.
21The conclusions of Propositions 1 and 2 hold under much weaker conditions: they hold if

−V ′′(rp̄), CP ′′(p̄) ≥ 0 and at least one is positive. If both are zero (e.g., V and CP are linear),
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Proposition 1. (Frictional Responses) Suppose κA
2 > 0 and κD

2 > 0. Then, for

any n̄ ∈ (0, 1), the following statements hold at n = n̄.

(i) (Responses to exogenous discharges)

(a) −∂a∗

∂n
> 0 and −∂d∗

∂n
< 0.

(b) Holding MCA(ā) and MCD(d̄) constant,
∣∣∂a∗
∂n

∣∣ decreases in κA
2 and increases

in κD
2 , and

∣∣∂d∗
∂n

∣∣ decreases in κD
2 and increases in κA

2 .

(ii) (Imperfect adjustment) −∂a∗

∂n
−
(
−∂d∗

∂n

)
∈ (0, 1).

(iii) (Covariation with occupancy) −∂2a∗

∂n2 > (<) 0 and ∂2d∗

∂n2 > (<) 0 hold if MCP ′′(p̄) >

(<) MBA′′(p̄).

Proposition 2. (Frictionless Responses) Suppose κA
2 = 0 or κD

2 = 0. Then, for

any n̄ ∈ (0, 1), −∂a∗

∂n
−

(
−∂d∗

∂n

)
= 1 at n = n̄. Moreover:

(i) If κA
2 > 0 and κD

2 = 0, then −∂a∗

∂n
= 0 and −∂d∗

∂n
= −1.

(ii) If κA
2 = 0 and κD

2 > 0, then −∂a∗

∂n
= 1 and −∂d∗

∂n
= 0.

Proofs are in Supplemental Appendix B. Proposition 1-(i) states that admissions

increase and discharges decrease as the occupancy rate n decreases. We show in Sup-

plemental Appendix B that the admission response can be expressed as

− ∂a∗

∂n

∣∣∣∣
n=n̄

= − κD
2

DJF (ā, d̄; n̄)
MBA′(p̄)︸ ︷︷ ︸

income effect≥0

+
κD
2

DJF (ā, d̄; n̄)
MCP ′(p̄)︸ ︷︷ ︸

cost effect>0

(3)

where MBA′(p̄) = r2V ′′(rp̄) ≤ 0 and DJF (ā, d̄; n̄) is a positive term that depends on κA
2

and other parameters. The first term represents an income effect, whereby a decrease

in occupancy induces the facility to increase admissions in order to compensate for the

lost income. The second term represents a cost effect, whereby a decrease in occupancy

reduces the marginal cost of service and allows the facility to admit more patients.

Proposition 1-(i) also shows that, holding marginal costs constant (hence holding a∗ and

d∗ constant), the response of admission (discharge) to occupancy shocks is larger when

the adjustment of admission is less (more) “frictional” than the adjustment of discharge,

the optimal admissions and discharges are invariant to occupancy around n = n̄.
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in the sense that the marginal cost of admission (discharge) does not increase fast or

the marginal cost of discharge (admission) rises rapidly.22 This is because the facility

attempts to adjust occupancy in the less costly way.

Next, Proposition 1-(ii) states that empty beds created by an exogenous occupancy

reduction are not fully filled if both admission and discharge adjustments are frictional in

the sense that κA
2 , κ

D
2 > 0. The difference

(
−∂a∗

∂n

)
−
(
−∂d∗

∂n

)
represents the extent to which

the occupancy reduction is offset by increased admissions and decreased discharges. The

difference is less than one, indicating imperfect adjustment. This in turn suggests that

the response may be dynamic in a repeated decision setting: the empty beds are only

partially filled each period, leaving room for adjustment in future periods.

Crucially, Proposition 1-(iii) shows how the magnitude of the admission and discharge

responses to occupancy shocks varies with occupancy. Eq.(3) shows that MCP ′′ ≥ 0

governs the variation in the cost effect and MBA′′ ≥ 0 governs the variation in the

income effect. The cost effect increases as occupancy increases, making the magnitude

of the admission response larger at higher occupancy rates. In contrast, the income

effect decreases as occupancy increases (recall MBA′ ≤ 0), making the magnitude of

the response smaller at higher occupancy rates. Intuitively, with a negative occupancy

shock, the incentive to admit more patients due to reduced capacity constraints is greater

when the facility is more occupied, while the incentive to admit extra patients for higher

income is greater when it is less occupied. If the former mechanism dominates the

latter, then the magnitude of the response increases with occupancy ( ∂
∂n

∣∣∂a∗
∂n

∣∣ > 0), and

it decreases with occupancy otherwise.23

Proposition 2 gives predictions for “frictionless” cases. Specifically, if the marginal

cost of admission or discharge is constant, then the facility perfectly adjusts its occupancy

in response to a decrease in occupancy (−∂a∗

∂n
−
(
−∂d∗

∂n

)
= 1). Moreover, if the marginal

cost of admission (discharge) increases while that of discharge (admission) does not,

then the response is driven solely by discharges (admissions), the less costly means of

adjusting occupancy.

22Precisely speaking, the admission and discharge costs shape the costs of adjusting occupancy. We
stick to the term “admission/discharge frictions” for convenience.

23With general MCA and MCD, the signs of ∂
∂n

∣∣∣∂a∗

∂n

∣∣∣ and ∂
∂n

∣∣∣∂d∗

∂n

∣∣∣ are not solely determined by

MCP ′′ and MBA′′. Even in such cases, the size of admission and discharge responses increases (de-
creases) with n if MCP ′′ is sufficiently larger (smaller) than MBA′′.
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3.3 Bounds on Cost and Income Effects

Although Proposition 1-(iii) concerns whether the variation in the cost effect or the

income effect mainly explains the variation in the admission/discharge responses, the

results can be used to bound the levels of the responses attributable to each effect, at a

given n. We note that DJF in Eq.(3) strictly increases with n, and thus the level of the

income effect strictly decreases with n, if −∂2a∗

∂n2 > 0 and ∂2d∗

∂n2 > 0.24

Panel A in Table 1 illustrates how to construct the bounds on cost and income

effects. We consider two cases, one where occupancy n is low and one where it is high.

We denote the admission response to a 1pp decrease in occupancy in each case as Rl and

Rh (> Rl), respectively. Suppose that the income effect explains α > 0 of the admission

response when n is low. The cost effect is the remaining part of the admission response,

Rl − α. Now, because the income effect strictly decreases with n, the income effect at

high occupancy should be smaller than α, yielding its bound [0, α). The bound of the

cost effect at high occupancy is then (Rh − α,Rh].

Panel B and C in Table 1 present examples of the discussion above. Suppose that

the admission response is 0.4pp at n = 0.5 and 0.7pp at n = 0.9 (Panel B). If we assume

that the income effect explains 0.2pp (50%) of the response at n = 0.5, then the income

effect at n = 0.9 is in [0pp, 0.2pp), so the cost effect at n = 0.9 is in (0.5pp, 0.7pp].

Without such an assumption on the income effect at n = 0.5, we still know that its

upper bound is the entire response, 0.4pp (Panel C), so the cost effect (income effect)

at n = 0.9 is larger than 0.3pp (smaller than 0.4pp). This approach is useful when, e.g.,

we discuss the value of the admission responses by examining the fraction of induced

demand in them.

3.4 Possible Simplifications and Extensions

The above model can be simplified while maintaining its main insights. First, we can

omit the discharge utility and replicate the main predictions about admissions alone (or,

conversely, we can study discharge decisions alone). Second, we can omit the terms bPp,

bAa, or bDd. The last two of these are included to explain the coexistence of positive

admissions and discharges, but we may set these terms to zero and focus only on, e.g.,

admissions. Then, we do not need bPp to explain positive admissions.

24See Supplemental Appendix B. Without this property, we know that the fraction of the income
effect among the response strictly decreases with n, which is useful for bounding exercises such as below.

15



Table 1: Bounds on cost and income effects

Decomposition of the admission response

Occupancy Admission response Income effect Cost effect

(A) Formula
n is low Rl α ∈ (0, Rl] Rl − α

n is high Rh (> Rl) [0, α) (Rh − α,Rh]

(B) Example 1
n = 0.5 0.4 0.2 0.2

n = 0.9 0.7 [0, 0.2) (0.5, 0.7]

(C) Example 2
n = 0.5 0.4 0.4 0

n = 0.9 0.7 [0, 0.4) (0.3, 0.7]

Notes: Table 1 shows a formula for the bounds on income and cost effects. The admission response
represents the increase in admissions when the occupancy rate is exogenously decreased by 1pp. The
unit of admission response, income effect, and cost effect is the percentage point (pp) of occupancy.

On the other hand, the model abstracts from several features, and can possibly be

enriched by introducing them. First, it omits the facility’s choice of care quality to

influence patient health. Instead, the facility chooses admissions and discharges con-

sidering their effects on congestion-dependent service quality (e.g., care intensity) and

resultant patient welfare. In other words, discharge in our model is a short-run tool to

manage congestion, rather than a long-run product of care. Second, it omits dynamics.

Although incentives to reserve beds for more profitable future patients can be important

in some contexts (Gandhi, 2023), our context features relatively homogeneous patient

profitability, as discussed in Sections 2, which makes dynamics relatively unimportant

(see also Section 6.3 for empirical investigation). Also, similar results will hold if we

extend the model with opportunity costs of admission. Third, we can relax the assump-

tions on functional forms, as mentioned in footnote 21. Finally, the model omits patient

and provider heterogeneity, to focus on the role of occupancy. In Section 3.5, we discuss

its implications for our empirical analysis.

3.5 Connecting Theory to Empirics

The above analysis shows how we can infer provider incentives by examining the effects

of occupancy changes on admissions/discharges. However, its empirical application will

be difficult due to heterogeneous demand shocks, e.g., pre-determined provider quality

(Einav et al., 2024), and supply shocks, e.g., admission costs. In Supplemental Ap-

16



pendix C, we develop a simple two-period model to discuss empirical implications of

such heterogeneity. It is summarized as follows. In period 1, the facility chooses its

initial occupancy to maximize its utility. In period 2, given the occupancy n, it chooses

new admissions a to maximize its utility. We use the above model but make the follow-

ing simplifying assumptions: (i) No discharge occurs. (ii) The facility is myopic. Now,

we introduce utility shocks ξ such that ∂MCA

∂ξ
(a, ξ) < 0 at each a. ξ may be interpreted

as supply shocks or a reduced-form expression for demand shocks: e.g., higher demand

shocks (due to better pre-determined quality, better transportation, seasonality, etc.)

attract more patients, making admission easier. In addition, the utility of the facility

depends on idiosyncratic shocks η, which is implicit here for simplicity.

Propositions 1 and 2 continue to hold if we hold the shocks (ξ1, ξ2, η2) constant,

where the subscripts denote time period. Note that the sole role of η1 in our model is to

explicitly indicate the source of exogenous variation in occupancy n∗ conditional on ξ1.

Moreover, the same results also hold for the averages of admissions or their derivatives

over idiosyncratic shocks η2 while holding (ξ1, ξ2) constant. This is useful for empirically

testing the predictions of the propositions.

In contrast, testing the propositions is hindered by the variation in (ξ1, ξ2). Propo-

sition 3 in Supplemental Appendix C shows that the following approximation holds:

Cov (a∗, n∗)

Var (n∗)
≈ ∂a∗

∂n︸︷︷︸
admission response

+
∂a∗

∂ξ2

∂n∗

∂ξ1

Cov (ξ1, ξ2)

Var (n∗)︸ ︷︷ ︸
endogeneity bias

. (4)

where n∗ and a∗ denote the optimal initial occupancy and new admissions, respectively.

Eq.(4) shows that the simple regression of admission on occupancy overestimates the true

admission response ∂a∗

∂n
if there exist persistent shocks (Cov (ξ1, ξ2) > 0) that positively

affect both current admissions (∂a
∗

∂ξ2
> 0) and current occupancy, i.e., past admissions

(∂n
∗

∂ξ1
> 0). In our empirical analysis below, therefore, we need to exploit variation in

occupancy n∗ that is not driven by persistent shocks ξ but by idiosyncratic shocks η.
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4 Data

4.1 Data Sources and Sample Selection

The primary data source is the Survey of Long-Term Care Benefit Expenditures, also

referred to as administrative LTCI claims data. The sample period is from April 2011 to

March 2018.25 The claims data contain information on each LTCI beneficiary’s monthly

use of LTC services, including both home-based care and facility care. We also observe

individual characteristics such as age, gender, care level, and coinsurance rate. The data

also provide admission dates for all patients, and the discharge date and destination for

those who are discharged in our sample period. If the discharge destination is recorded

as “death,” it is interpreted that the bed became vacant due to patient deaths.26 We also

use the Survey of Institutions and Establishments for Long-Term Care to obtain annual

information on the characteristics of each GHSF, such as the number of beds, physicians,

nurses, and care staffs. Combining these datasets, we construct a facility-by-date panel

data on the number of in-facility patients, deaths, and admissions and discharges for

each facility-date. Based on the number of beds and patients, we can calculate the daily

bed occupancy rate for each facility. If patients stay at the facility for inpatient care

on a given day, they are included in the number of in-facility patients.27 Therefore,

admissions increase the occupancy rate on the same day, while discharges lower the

occupancy rate on the following day.28

The sample for our analysis is selected as follows. First, we exclude facilities with a

specialized dementia unit, because we cannot observe whether patients are admitted to

regular or dementia units, making it difficult to identify the relevant congestion measure.

We also exclude facilities whose maximum occupancy rate falls in the bottom or top 1

percentile of the distribution of maximum occupancy across providers. We impose the

25In Japan, a fiscal year begins on April 1 and ends on March 31.
26A potential concern in using deaths as a daily occupancy shifter is measurement error problems,

e.g., discrepancies between the date of death vs. the date of discharge. Given our event study results
in Figure 3, this concern is unlikely to be important. Moreover, in the main analysis, we use deaths as
instruments, so their measurement error does not invalidate the main empirical strategy.

27Outpatients are not included in the number of in-facility patients.
28In the static model in Section 3, discharges affect utility-relevant occupancy p immediately. This

is not inconsistent with the timing of measurement described here, because discharges can reduce the
burden of services and affect facilities’ utility before they appear in the measurement. In our main
empirical analysis, we compute and use occupancy before admissions and discharges occur in the day,
which corresponds to n in the theoretical framework in Section 3.
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former restriction to eliminate providers that are always empty, while we impose the

latter restriction to exclude occupancy outliers that may be mismeasured.29

4.2 Summary Statistics

Table 2 shows summary statistics for our main sample at facility-date level. The average

number of beds is 83, with most facilities having between 50 and 100 beds. On aver-

age, a facility employs 0.72 full-time equivalent physicians and 8.96 full-time equivalent

nurses.30 The average occupancy rate is 77%, and the breakdown by care levels shows

that the main patients in GHSFs are those in care levels 3-5 with high care needs. The

average number of daily long-stay admissions and discharges is about 0.2, which means

that one long-stay patient is newly admitted or discharged every 5 days.

Figure 1 shows the histogram of occupancy rates in our analysis sample. Occupancy

is mostly concentrated in the range of 80-100%. A small number of observations have

occupancy rates higher than 100%, possibly due to the temporary use of a makeshift

bed, although the reimbursement rate is reduced if such excess utilization persists for a

period of time. The availability of makeshift bed and the reimbursement rule suggest

that the number of beds reported by facilities may be a “soft” constraint that can be

slightly exceeded at some cost.

Figures 2a and 2b show the binscatter of the patient-to-nurse ratio and the patient-

to-care staff ratio against occupancy rate, using facility-fiscal year observations.31 The

average number of patients per nurse (care staff) is about 8 (2.7) at 80% occupancy, and

it rises to about 9.5 (3.4) as occupancy approaches 100%. This suggests that it is difficult

for facilities to adjust staffing levels based on occupancy rates, implying less nurse time

per patient at higher occupancy rates. Given that staffing levels are not adjusted on

an annual basis, short-term staffing adjustments are unlikely to affect facility capacity,

which is consistent with the shortages of care workers noted in Section 2.1.

29Our main results are unchanged when we remove the sample restrictions based on the maximum
occupancy rate. See Appendix Figure A6 and Appendix Table A4.

30Since GHSFs are required to have a physician, facilities that do not employ a full-time physician
employ a part-time physician.

31For ease of viewing, the plot uses only observations with at least 50% occupancy.

19



Table 2: Summary Statistics

Mean SD p10 p90
(1) (2) (3) (4)

Facility-date (Obs. = 6,759,473, #Facilities = 3,073)

Number of beds 83.44 30.45 48 100

Number of physicians 0.72 0.56 0 1

Number of nurses 8.96 3.76 5 13

Number of care staffs 26.02 10.37 13 38

Occupancy rate (pp) 76.73 30.20 12.86 98.15

Care level 1 8.11 6.77 0 17.14

Care level 2 13.74 8.21 1.25 24.00

Care level 3 17.72 9.11 2.50 28.00

Care level 4 20.27 10.25 3.00 32.00

Care level 5 15.70 11.77 2.00 30.00

Number of admissions 0.47 0.85 0 2

Short stay 0.27 0.65 0 1

Long stay 0.20 0.47 0 1

Number of discharges 0.47 0.85 0 2

Short stay 0.27 0.65 0 1

Long stay 0.19 0.49 0 2

Home 0.04 0.21 0 0

Hospital 0.07 0.27 0 0

Death 0.01 0.12 0 0

Notes: Table 2 presents summary statistics for the facility-date panel. The last
two columns present 10th and 90th percentiles. The number of physicians, nurses,
and care staffs are full-time equivalent. The occupancy rate (overall and by care
levels) is the number of patients in the category divided by the number of beds,
expressed in pp. The other variables are expressed in level.

5 Empirical Strategy

5.1 Effect of Occupancy on Admissions and Discharges

A naive way to test the predictions of Propositions 1 and 2 is to regress admissions

and discharges on occupancy rate and examine its coefficients. However, this approach

suffers from endogeneity because occupancy may be affected by facilities’ unobserved pre-

determined quality or operational efficiencies that also affect admissions/discharges. We
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Figure 1: Distribution of Occupancy Rates
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Notes: Figure 1 shows the histogram of occupancy rates in our analysis sample.

Figure 2: Occupancy and Patient-to-Staff Ratio
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Notes: Figures 2a and 2b show the binscatter of the patient-to-nurse ratio and the patient-to-care staff
ratio versus annual average occupancy rate, using facility-fiscal year observations with at least 50%
occupancy. The numbers of nurses and care staffs are full-time equivalent.

address this problem by exploiting patient deaths. When a patient dies in a facility, she

is discharged from the facility, which reduces occupancy on the following day.32 Patient

deaths lead to a marginal change in occupancy, which corresponds to the marginal change

in n in Propositions 1 and 2. The key assumption is that the timing of patient deaths

is unrelated to the preferences of live patients and exogenous to facility decisions.

32Recall that discharges lower the occupancy rate on the following day (see Section 4.1).
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5.1.1 Event Study

We first use an event study regression to examine the timing of the response, in particular

whether the facilities respond immediately to occupancy shocks. It also allows us to test

for the presence of a pre-trend in admissions/discharges, which would likely indicate a

violation of our identification assumption.

Specifically, we estimate the following regression:

Yjt =
84∑

k=−84

βkDeathsjt−k + λ′Xjt + γjy + γt + εjt, (5)

where Yjt denotes the number of admissions or live discharges of long-stay patients in

facility j on date t. Deathsjt denotes the number of patients who died on date t in facility

j. To normalize the scale of admissions and discharges across facilities, we divide these

variables by the number of beds in the facility. Thus, they are measured as a percentage

point (pp) change in occupancy. The parameter of interest is βk, which represents the

“effect” of patient deaths on the number of admissions or live discharges k days before

(k ≤ 0) or after (k > 0) the death event.33 We estimate βk from 84 days (12 weeks)

before and after patient deaths. The regression model includes fiscal year-specific facility

fixed effects γjy (which control pre-determined quality, staffing, equipment, and other

unobservable factors at the facility-fiscal year level) and date fixed effects γt. Control

variables Xjt include average age, female ratio, the share of patients whose coinsurance

rate is strictly above 10% (indicating relatively high income), average care levels, and

the share of patients receiving terminal care in facility j on date t. Standard errors are

clustered at the municipality level because each municipality is an insurer of LTCI and

error terms may be correlated within insurers.

Regression (5) can be provided with a theoretical foundation using the framework in

Section 3, under additional assumptions. Suppose (i) the admission/discharge functions

are linear (at least locally): Yjt = αj + αt + αY njt, where Y denotes a (admission) or d

(discharge), and (ii) occupancy evolves as njt+1 = njt + ajt − djt −∆jt where ∆ denotes

deaths. Then, successively substituting njt yields Yjt as a function of the lags of ∆ and

a residual. Adding leads of deaths (for pre-trend analysis) and decomposing the residual

using controls and fixed effects yields Eq.(5). Proposition 1 yields testable implications

33Because multiple patients may die in a day, our specification corresponds to an event study design
for multiple events with different intensity (Schmidheiny and Siegloch, 2023).
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for the regression parameters: for k > 0, (a) βk ∈ (0, 1) for admissions, (b) βk ∈ (−1, 0)

for discharges, and (c) |βk| decreases with k.

5.1.2 Instrumental Variables Estimation

In the main analysis, we conduct instrumental variables (IV) regressions of admissions

and discharges, using patient deaths as an IV for occupancy rate. The effect of occupancy

rate on admissions and discharges is specified as:

Yjw(t) = βOCjt + λ′Xjt + γjy + γt + εjt, (6)

where Yjw(t) denotes the number of admissions or live discharges (in pp) of facility j in

the week(s) w(t) following date t.34 We mainly examine the outcomes in the first one or

four week(s) following t, though we also show baseline results for up to 12 weeks. OCjt

denotes the occupancy rate of facility j at the beginning of date t, before the facility

admits or discharges patients. The parameter of interest, β, denotes the effect of a 1 pp

increase in occupancy on outcomes. This allows us to investigate how the frictions in

adjusting admissions and discharges differ and how they vary over different time horizons

(Propositions 1-(i)(ii) and 2). We control for the average number of deaths in the four

weeks prior to the date (to capture heterogeneous mortality trends), as well as control

variables included in the event study.

The first-stage regression is

OCjt = αDeathsjt−1 + λ̃′Xjt + γ̃jy + γ̃t + ε̃jt, (7)

where Deathsjt−1 denotes the number of patient deaths (in pp) on date t− 1.

5.1.3 Effects by Baseline Occupancy

Proposition 1-(iii) states that if variation in the cost effect (income effect) is the main

driver of variation in admission/discharge responses to occupancy shocks, then the re-

sponses will be more (less) intense at higher occupancy rates. We test this prediction by

estimating Eq.(6) separately at different occupancy levels (below 85%, 85-90%, 90-95%,

34For example, Yjw(t) may represent the number of admissions during day t through t+6 (one week)
or admissions during day t through t+ 27 (four weeks).
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and above 95%) and comparing responses across groups. This exercise is conceptually

similar to regressing − ∂a
∂n

on n to examine the sign of ∂
∂n

(
− ∂a

∂n

)
.

However, there are two concerns. First, the comparison of admission responses across

occupancy levels may be confounded by heterogeneity that causes both higher baseline

occupancy and larger admission responses, rather than by differential congestion. For

example, higher-quality facilities may have both higher occupancy and larger responses,

because many patients have decided or are ready to be admitted. Therefore, we also

conduct an alternative regression analysis that exploits an arguably exogenous variation

in baseline occupancy levels. Specifically, we estimate the following regression model:

Yjw(t) = β1OCjt + β2OCjt × I {OCjt ≥ Lo}+ λ′Xjt + γjy + γt + εjt, (8)

where Lo is an occupancy cutoff. As IVs, we useDeathsjt−1 andDeathsjt−1×TotalDeathsjt−1,

where TotalDeathsjt−1 denotes the total number of deaths in the K weeks preceding

day t − 1.35 β2 measures how the magnitude of the admission response to occupancy

changes when a facility is exogenously assigned to a higher baseline occupancy level.

The identification idea is that deaths prior to day t− 1 affect the baseline occupancy on

day t− 1 without shifting demand on day t− 1, at least if we focus on a relatively short

period prior to t− 1.

Second, facilities may differ in what they consider to be high occupancy, e.g., due to

heterogeneous cost functions. In such a case, a comparison across occupancy levels may

reflect heterogeneity other than congestion. To address this concern, we implement an

alternative classification of occupancy groups. Specifically, we compute facility-specific

quartiles of occupancy and then classify observations into the following groups: below

25th percentile, 25-50th percentile, 50-75th percentile, and above 75th percentile. This

allows us to examine how admission responses differ when baseline occupancy becomes

high relative to each facility’s standard.36

35We use Lo = 95%, 90%, 85% and K = 2.
36In estimating separate regressions by baseline occupancy levels, fixed effects account for hetero-

geneity in facilities’ “standard” occupancy within each occupancy group, but they do not account for
heterogeneity related to facilities’ assignment to occupancy groups. Regression by occupancy percentiles
will mitigate the latter problem, by exploiting variation in assignment to facility-specific high vs. low
occupancy groups.

24



5.2 Identification Concerns

The key identification assumption for Eq.(5) and (6) is that the timing of patient deaths

is exogenous to confounding factors that affect admissions or discharges. Because we

control for fiscal year-specific facility fixed effects and date fixed effects, our estimates

are unaffected by different admission tendencies across facilities or time-specific shocks

to demand for in-facility care. In addition, patients are unlikely to respond quickly to

short-run fluctuations in occupancy, in part because information on patient deaths is

difficult to collect, while longer-term trends in occupancy are captured by provider-by-

fiscal year fixed effects. The exclusion of short-run occupancy from patient preferences

is especially plausible for admissions, because of the time lag between application and

admission, which can be more than a month.

Timing of patient deaths. Identification can be challenged by unobserved confounders

that affect both trends in admissions/discharges and trends in patient deaths. For

example, facilities may increase admissions and skimp on necessary care, both motivated

by increasing concerns about profits. We investigate this possibility by testing for a

common pre-trend in the number of admissions or discharges between facility-dates that

face patient deaths and those that do not. We also note that our estimation exploits

variation in deaths residualized by covariates, including the share of patients receiving

terminal care and the number of deaths in the previous month, as well as fixed effects.

The residual variation in deaths is likely to be exogenous and unexpected, at least at

the daily level.

Patient response to death events. Another concern in estimating Eq.(6) is that death

events may directly affect admissions and discharges, violating the exclusion restriction.

For example, the deaths may cause live patients to avoid admission or to seek sooner

discharge because they signal the poor pre-determined quality of the facility. Such effects

are likely to be negligible for admissions, because it is difficult for applicants to gather

information about the daily deaths of in-facility patients. Patients are also unlikely

to hasten discharge in response to death events, especially in the short run, because

discharge requires advance planning. It is also unlikely that patients update their beliefs

about facility quality based on daily (not long-run aggregate) deaths residualized by

detailed covariates and fixed effects.

Extra work due to patient deaths. Alternatively, deaths may create extra work, induc-

ing facilities to reduce workload by deferring new admissions or expediting discharges. In
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Section 6.1.1, we show that the overall pre-trend in admissions/discharges is statistically

indistinguishable from zero, which equals the effect of patient deaths on admissions/dis-

charges on the same day (β0 in Eq.(5), after normalization). This result indicates that

the death-related extra work has little impact on admissions/discharges. Moreover, the

outcomes are admissions/discharges after dead patients’ discharges and associated work

have already been completed.37

Facility-level health shocks. A related concern is that patient deaths may be caused by

facility-level health shocks, such as influenza outbreaks. In this case, patient deaths and

admissions/discharges may be correlated through a pathway other than occupancy rates.

To check this possibility, we estimate Eq.(5) using the number of discharges to hospital

(hospitalizations) as an outcome. Since GHSFs do not provide acute medical care (see

Section 2), facility-level health shocks severe enough to cause patient deaths would be

expected to result in increased hospitalizations among in-facility patients. Appendix

Figure A1 shows that the trend in hospitalizations does not change around the timing

of patient deaths, ruling out the possibility that facility-level health shocks are the main

cause of patient deaths.

Assignment of baseline occupancy. As described in Section 5.1.3, when we estimate

Eq.(6) by occupancy levels, still another concern is that assignment to different baseline

occupancy levels is non-random, due to demand shocks or cost shocks. We address these

concerns by two exercises. First, we estimate an alternative regression Eq.(8), which

uses patient deaths in the past two weeks as a source of exogenous variation in baseline

occupancy. The two-week patient deaths should be exogenous to the pre-determined

quality of facility: given that long-term care is labor-intensive and staffing adjustments

are inflexible (see Section 4.2), it is unlikely that the facilities’ pre-determined quality

would fluctuate in such a short period and affect patient deaths.38 Second, we estimate

Eq.(6) and (8) by facility-specific occupancy percentiles rather than levels, to exploit

within-facility variation in assignment to high vs. low occupancy.

37The direct effects via patient preference or extra work, if any, would make our estimates conservative.
38Nevertheless, patient deaths in the past two weeks are more likely to be endogenous than those in

the previous day. We try patient deaths in the past week instead and obtain similar results, although
the first stage becomes weaker.
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6 Results

6.1 Effects of Occupancy on Admissions and Discharges

6.1.1 Event Study Results

Figure 3 plots the estimates of βk in the event study regression (5), which represents the

effects of patient deaths on the number of admissions or live discharges measured as a

pp change in occupancy. The parameter for the day of patient deaths is normalized to

zero (β0 = 0). Figure 3a displays the results for admissions using the full sample. The

estimates before patient deaths are close to zero and show no pre-trend, supporting the

identification assumption for the event study design. Figure 3a also shows that admis-

sions increase significantly immediately after patient deaths. The increase begins on the

next day of patient deaths and persists for about a month. Given the long admission

process, the immediate responses are likely driven by admissions of patients who are

ready and waiting to be admitted. Note that the estimates confirm the implications of

the theoretical framework, as described in Section 5.1.1: for k > 0, βk ∈ (0, 1) and its

magnitude tends to decrease with k.

To eliminate the mechanical effect of binding capacity constraints, Figure 3b shows

the same regression result using observations for which capacity constraints are not

binding. Figure 3b shows that even such facilities respond to patient deaths by increasing

admissions. However, the magnitude of the response is smaller than that shown in

Figure 3a, probably because the latter includes the mechanical effect of binding capacity

constraints in addition to the effects of increasing marginal costs and demand inducement

for non-binding cases. This is consistent with the prediction of Proposition 1: the theory

treats a binding capacity constraint as a special case of particularly high occupancy, so

eliminating such cases will reduce the magnitude of admission responses.

Figures 3c and 3d show the results for live discharges using the full sample and the

sample with non-binding capacity constraints, respectively. Neither shows a pre-trend.

In contrast to admissions, the live discharges decrease after patient deaths, but very

slightly. The different responsiveness of admissions and discharges to patient deaths

can be explained by different frictions in adjusting admissions and discharges. As de-

scribed in Section 2.2, discharging a patient requires an in-advance planning, including

consultation with the patient and their family. Flexibly changing a patient’s planned

discharge date may be difficult, and adjusting discharges is likely to be costly. On the
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Figure 3: Effect of Patient Deaths on Admissions and Live Discharges

(a) Admission (Whole sample)
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(b) Admission (Full occupancy excluded)
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(c) Live Discharge (Whole sample)
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(d) Live Discharge (Full occupancy excluded)
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Notes: Figure 3 plots estimates of βk coefficients from Eq.(5), which is a regression of the number of
admissions or live discharges on the number of patient deaths, fiscal year by facility fixed effects, date
fixed effects, and other controls. The estimate of βk on the day of patient deaths is normalized to
zero. Standard errors are clustered at the municipality level, and dotted lines show the 95% confidence
intervals.

other hand, adjusting admissions may be less costly if there are patients who are ready

to be admitted.

6.1.2 IV and OLS Estimates

Figure 4 plots the IV estimates of β in Eq.(6), with the sign reversed to indicate the

effect of a 1pp decrease in occupancy. For example, a 1pp decrease in daily occupancy

leads to a 0.64pp increase in admissions (blue curve) and a 0.21pp decrease in discharges

(red) of long-stay patients over the following 12 weeks, implying that 84%(=64%+21%,
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Figure 4: Effect of Empty Beds on Admissions and Live Discharges Over Time

First stage (SE): -0.771 (0.0148)
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Notes: Figure 4 plots the estimates of the coefficient on occupancy in Eq.(6) and their 95% confidence
intervals, using as outcomes long-stay admissions (blue curve), live discharges (red), and admissions
minus live discharges (orange) for the following T week(s), T = 1, ..., 12. The sign is reversed to represent
the pp effect of a 1pp reduction in occupancy. Standard errors are clustered at the municipality level.

with rounding) of the vacated beds are filled during this period (orange). Unlike the

event study results in Figure 3, the decrease in discharges is statistically significant,

probably because the outcome is aggregated over a longer period. The total response to

a reduction in occupancy, −∂a∗

∂n
−(−∂d∗

∂n
), is positive but less than one, consistent with the

theoretical predictions for the frictional case (Proposition 1) rather than the frictionless

case (Proposition 2). Again, admission responses are larger than discharge responses,

suggesting that discharge frictions are larger. Admission and discharge responses tend

to increase over time, suggesting that short-run adjustment is more frictional.39

Appendix Figure A2 plots the OLS and IV estimates of the coefficients on occupancy

in the regression Eq.(6). Although both (reversed) estimates are positive for admissions

and negative for discharges, the IV estimates are larger than the OLS estimates, es-

pecially for admissions. This suggests that the OLS under-estimates the effect of an

occupancy reduction, probably because congested facilities tend to admit more patients.

This attenuation bias is reminiscent of the attenuation bias of the OLSE in the regression

of quantity on price.

39The magnitude of responses is not monotonically increasing in weeks, because the admissions and
discharges in the “control group” change over time as well.
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Figure 5: Effect of Empty Beds on Admissions and Live Discharges, by Occupancy Level
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Notes: Figure 5 plots the IV estimates of the coefficient on occupancy in Eq.(6) and their 95% confidence
intervals, using as outcomes long-stay admissions (Figure 5a) or live discharges (Figure 5b) for the
following 1 week (blue), 4 weeks (red), and 12 weeks (orange), separately by baseline occupancy level.
The sign is reversed to represent the pp effect of a 1pp reduction in occupancy. Standard errors are
clustered at the municipality level.

6.2 Heterogeneous Effects by Occupancy Levels

We now estimate Eq.(6) separately by occupancy rates on day t − 1. Figure 5a plots

the coefficients on occupancy from the regressions of 1-week, 4-week, and 12-week ad-

missions, for each occupancy group: below 85%, 85-90%, 90-95%, and above 95%. To

show that the result for the last group is not entirely driven by a mechanical admis-

sion responses from fully occupied facilities, we also show the results for facilities with

occupancy strictly below 1 (labeled “95-99%”). The figure suggests that the admission

responses tend to be larger at higher occupancy rates. The pattern holds whether or not

we drop observations with binding capacity constraints. The increasing (in occupancy)

response is consistent with the cost effect being a more important driver of variation in

admission responses than the income effect. In contrast, Figure 5b shows no system-

atic relationship between the discharge responses and baseline occupancy. This may be

because discharges are less manipulable for capacity utilization management, and thus

less reflective of facility incentives, than admissions. The qualitative results are similar

when we group observations by occupancy percentiles rather than levels (see Appendix

Figure A3).

Note that the differences in admission responses between occupancy levels shrink for
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longer-run outcomes, especially 12 weeks. This is possibly because admissions approach

the steady-state level in the long run. We therefore focus on the effects on 1-week or

4-week admissions and discharges, interpreted as short-run outcomes, in what follows.

Panel A of Table 3 presents the estimates from Eq.(8). Because there is no system-

atic heterogeneity in the discharge responses across baseline occupancy levels, we only

show the results for admissions. The table shows that the positive responses to an occu-

pancy reduction are larger when the baseline occupancy is higher.40 The same pattern

holds when we exclude observations with binding capacity constraints, although some

interactions are statistically insignificant (see Panel A of Appendix Table A3). Again,

the results are qualitatively similar when we use occupancy groups based on percentiles

instead of levels (see Panel B of Tables 3/A3).

Our results are qualitatively similar when we lift the sample restriction that excludes

observations with extreme values of occupancy, as mentioned in Section 4 (see Appendix

Figure A6 and Table A4). The results are also similar when we instead strengthen the

sample restriction, by dropping facilities with the maximum occupancy below 50% from

our main sample (see Appendix Figure A7 and Table A5).

6.3 Occupancy and Patient Selection

Next, we test for selective admissions (Gandhi, 2023) by examining whether the com-

position of admission responses differs at different occupancy levels. Figure 6 plots the

coefficients for 1-week admissions of each care level, separately by baseline occupancy

levels. We divide the care level-specific coefficient by the coefficient for total admissions

within each occupancy level, so that the numbers indicate the share of the admission

response accounted for by the particular care level. The figure suggests that, although

admissions of higher care levels tend to account for a larger share, the composition does

40The coefficient on uninteracted occupancy denotes the admission response of the low-occupancy
group, which seems to be somewhat larger than the estimates shown in Figure 5a. For example, the
regression result of 1-week admissions with an interaction term for occupancy above 85pp (third column
in Panel A of Table 3) implies that the admission response of the group with occupancy below 85%
is 0.26, whereas the admission response of the same group shown in Figure 5a is 0.08. This is likely
because the regression Eq.(8) pools various occupancy groups considered in Figure 5a into a high- or low-
occupancy group, making the estimated difference between the groups (captured by the coefficient on the
interaction term) smaller and adjusting the estimates of low-occupancy admission responses (captured
by the coefficient on the uninteracted occupancy) upward. The purpose of estimating regression Eq.(8)
is to show that different identification assumptions lead to similar qualitative results, and we will mainly
refer to the results shown in Figure 5a for the rest of this paper.
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Table 3: Effect of Empty Beds on Admissions, with Nonlinear Terms

Panel A: Estimates based on Occupancy Levels

1-Week Admission 4-Week Admission

Occupancy (decline) 0.307*** 0.291*** 0.257*** 0.614*** 0.600*** 0.573***
(0.0266) (0.0218) (0.0161) (0.0248) (0.0218) (0.0186)

Occupancy (decline) ×

I(Occupancy≥ 95pp) 0.0517*** 0.0424***
(0.0129) (0.0140)

I(Occupancy≥ 90pp) 0.0594*** 0.0487***
(0.0137) (0.0159)

I(Occupancy≥ 85pp) 0.110*** 0.0904***
(0.0270) (0.0296)

Cragg-Donald F-stats 164.0 141.4 78.05 164.0 141.4 78.05

N 6,673,744 6,673,744 6,673,744 6,673,744 6,673,744 6,673,744

Panel B: Estimates based on Percentiles of Occupancy

1-Week Admission 4-Week Admission

Occupancy (decline) 0.311*** 0.301*** 0.282*** 0.617*** 0.609*** 0.594***
(0.0263) (0.0232) (0.0202) (0.0246) (0.0225) (0.0204)

Occupancy (decline) ×

I(Occupancy≥ 75pctile) 0.0317*** 0.0260***
(0.00759) (0.00832)

I(Occupancy≥ 50pctile) 0.0291*** 0.0238***
(0.00676) (0.00759)

I(Occupancy≥ 25pctile) 0.0445*** 0.0365***
(0.0103) (0.0117)

Cragg-Donald F-stats 252.2 300.3 215.1 252.2 300.3 215.1

N 6,673,744 6,673,744 6,673,744 6,673,744 6,673,744 6,673,744

Notes: Table 3 shows the estimates of the coefficients in the regression (8), using 1-week or 4-
week admission as the outcome and deaths in the previous 2 weeks to construct an instrument for
the interaction. The sign is reversed to represent the pp effect of a 1pp reduction in occupancy.
Standard errors clustered at the municipality level are reported in parentheses. ***p<0.01,
**p<0.05, *p<0.1.

not change systematically with baseline occupancy levels. This suggests that variation

in occupancy does not induce facilities to select patients with different care levels. This

pattern also holds when we use 4-week admissions (see Appendix Figure A4).

Similarly, Appendix Figure A5 plots the coefficients for the 1-week or 4-week ad-
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Figure 6: Effect of Empty Beds on Admissions, By Occupancy and Care Levels
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Notes: Figure 6 plots the IV estimates of the coefficient on occupancy in Eq.(6) and their 95% confidence
intervals, using long-stay admissions for the following 1 week as the outcome, separately by occupancy
and care levels. The coefficients are divided by the coefficient in the baseline regression that pools all
care levels, so the numbers represent the share of each care level in the admission response. Standard
errors are clustered at the municipality level.

missions of long- vs. short-stay patients. Similar to Figure 6, the numbers represent

the share of long or short stays in the admission response. The share of long-stay ad-

missions in 1 week or 4 weeks increases slightly as occupancy increases (although the

increase is not significant). The larger share of long stays at higher occupancy rates

is possibly because providers prefer patients who fill in their beds for longer periods of

time. All of the empirical results except Appendix Figure A5 focus on (the more pre-

ferred) long-stay patients, so the dynamic incentive for selection along this dimension is

likely unimportant.

6.4 Interpretations of Admission Responses

The results of the admission responses by occupancy levels are nontrivial, because they

allow us to infer the mechanisms underlying the admission responses. Specifically, we

interpret the positive and increasing (in baseline occupancy) admission responses to

occupancy reductions, shown in Section 6.2, as driven by variation in cost effects. The

response pattern is unlikely to be explained by variation in income effects, because

responses would then decrease with occupancy under plausible utility functions.
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Cost effects are also likely to explain a large part of the overall level of admission

responses. The discussion in Section 3.3 suggests that the income effect for 1-week

admissions is at most 0.08pp (i.e., the admission response at occupancy below 85%), so

the cost effect at occupancy strictly between 95% and 100% is at least 0.21pp (= 0.29pp

− 0.08pp), or 72.4% (= 0.21
0.29

) of the total response.41 Moreover, the income effect is

likely less than 0.08pp, because demand inducement is difficult in the short run. Thus,

the cost effect will account for some part of admission responses at all occupancy levels.

Even if we use the results of 4-week admissions, for which demand inducement is likely

easier, the cost effect accounts for at least 0.30pp (= 0.61pp − 0.31pp) or 49.2% (=0.30
0.61

).

The results by occupancy levels are also informative about the mechanisms behind

the cost effect. Some portion of the cost effect is likely due to increasing marginal costs

rather than binding capacity constraints, because the latter would imply flat admis-

sion responses except for facilities with binding capacity constraints (in contrast to the

increasing responses shown in Figure 5a). On the other hand, the 1-week admission

response for the 95-99% occupancy group is significantly smaller than the response for

the 95%+ group (Figure 5a), suggesting that binding capacity constraints (Boehm and

Pandalai-Nayar, 2022) also play some role in the response, at least in the short run.

We infer that increasing marginal costs will explain some of the admission responses

even after we account for facilities’ dynamic considerations on capacity constraints

(Gandhi, 2023). Unlike the U.S. SNFs studied by Gandhi (2023), which accept pa-

tients with different profitability, reimbursement in our setting is based on a universal,

care needs-adjusted system. Indeed, we find no evidence of occupancy-induced selection

on care levels (Figure 6). Length of stay, another possible dimension of patient selec-

tion, is also not important, because we focus on long-stay patients. They are probably

preferred to short-stay patients because of their longer lengths of stay, reducing demand

uncertainty and admission/discharge costs.42

Several reasons may explain why the marginal cost of service increases with occu-

41The lower bound for the cost effect is even higher if we include observations with binding capacity
constraints. Conversely, if we assume that capacity constraints are binding at the occupancy rate of
95% (due, e.g., to reserved beds or labor shortages) and focus on the cost effect at occupancy between
90% and 95%, then the lower bound is lower (0.17pp − 0.08pp=0.09pp) but still a substantial fraction
of the total admission response ( 0.090.17 = 52.9%).

42Some beds may be reserved for emergency admissions, effectively imposing capacity constraints
strictly below physical bed capacity. Note, however, that our analysis exploits within-facility variation
in occupancy levels/percentiles. Thus, as long as the number of reserved beds is constant within each
facility, the admission responses at lower occupancy cannot be explained by binding capacity constraints.
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pancy. First, congestion reduces the quality of service, thereby reducing the altruistic

utility of the facility. Lower service quality can also result from worker burnout or man-

agement slowdowns that prevent efficient care delivery. Second, medical resources may

be allocated in order of decreasing productivity, making it costly to serve additional

patients at high occupancy rates. Third, the marginal cost of hiring and retaining staff

is likely to increase with occupancy. As occupancy increases, facilities will need to pay

employees overtime and at a higher rate. In addition, higher occupancy may worsen

working conditions, making additional hiring more difficult. Figure 2 is consistent with

some of the explanations: the patient-to-staff ratio (a measure of inverse quality and

that of the harshness of the work environment) tends to be higher at higher occupancy.

7 Policy Implications for Healthcare Capacity

Our conceptual framework and empirical results yield a nontrivial and important insight

that a large fraction of admission increases in response to available capacity are driven by

cost effects rather than income effects, at least for congested facilities. Many studies have

emphasized that available capacity itself leads to costly care provision due to providers’

financial incentives, e.g., to induce demand (e.g., Freedman, 2016).43 On the other

hand, a small number of other studies suggest that capacity constraints deter service

provision (e.g., Ching et al., 2015).44 The relative importance of these effects has not

been investigated in a unified framework. Understanding the mechanisms behind the

effects of capacity on care provision has important implications for capacity policies.

If capacity affects care delivery mainly through income effects, an idea emphasized in

the vast literature on supplier-induced demand, then capacity expansion would increase

wasteful care provision.45 In an extreme case where the entire admission responses are

43There can also be dynamic financial incentives to forgo admitting a patient in order to admit a
more profitable patient in the future (Freedman, 2016; Gandhi, 2023). As discussed in Section 6.4, such
incentives seem relatively weak in our context.

44Although Freedman (2016) emphasizes the importance of financial incentives, e.g., to induce demand
(also expressed as “income effects” in p.159), he also discusses other mechanisms, including congestion
externalities (similar to congestion costs considered in this paper). However, he does not formally assess
the relative importance of the mechanisms. Also related are studies by Gandhi (2023) and Hackmann
et al. (2024), who document how capacity constraints affect access to care, though their findings are
focused on whose access is compromised rather than the overall level of access reduction.

45Capacity includes beds, other medical equipment, and staffing. Additional capacity will increase
fixed costs (e.g., wages), so it will incentivize facilities to induce demand, just as lower patient volume
will. Our theoretical framework unifies both shocks as negative occupancy shocks, so it is applicable to
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due to wasteful income effects, we would conclude that additional capacity is the least

valuable for the most congested facilities because they exhibit the largest income effects,

which is the opposite of our conclusion. In contrast, our framework and empirical results

suggest that cost effects are the main driver of the admission responses to capacity

expansion at congested facilities. This suggests that the incremental admissions are

relatively beneficial at congested facilities, and that such facilities should be prioritized

when the government considers policies to expand healthcare capacity.

Under some assumptions, the above insight can extend to policy discussions on the

assignment of market-level healthcare capacity. Healthcare capacity is typically not

planned at the level of individual facilities, but at a broader market level, such as mu-

nicipalities, considering the population characteristics in the market. Due to limited

resources, it is crucial to determine which markets should be prioritized for additional

capacity assignment. For this purpose, we can compute the market-level cost effects

and income effects (in response to a 1pp decrease in occupancy at each facility in the

market) and compare markets based on these measures. To illustrate, suppose that the

net social benefit of admissions due to cost effects is positive and weakly higher than

the (positive or negative) net social benefit of admissions due to income effects.46 Now,

consider two markets, Market A and Market B, such that Market A has a larger ad-

mission response and a smaller income effect than Market B. Then, Market A should

be prioritized over Market B for expanding capacity, because the former can achieve a

larger increase in total admissions but a smaller increase in low-benefit admissions in

response to a capacity expansion, implying larger total benefits under our assumption.47

Thus, markets such that there is no other market with a larger admission response and

examining policies to expand capacity.
46In Section 6.3, we argue that admissions in response to occupancy reductions are similar across

different baseline occupancy levels, in terms of profit-relevant characteristics. This suggests that cost
and income effects lead to admissions of patients with similar such characteristics. Still, admissions by
the two effects may differ in characteristics relevant to patient benefits. The assumption that admissions
due to income effects (supplier-induced demand) are of relatively low value is based on numerous studies
(Arrow, 1963; McGuire, 2000) that suggest that information asymmetry may cause medical providers
to sacrifice patients’ interests to prioritize their financial interests. On the other hand, Freedman
et al. (2025) find that greater supply of neonatal intensive care units in low-access areas leads to more
admissions and lower mortality of newborns with very low birth weight, which suggests that cost effects
may improve health outcomes by serving high-needs patients with previously limited access to care.
Although health services provided out of an imperfect agency relationship between a physician and a
patient may still be effective (Labelle et al., 1994), cost effects will be more valuable, at least to patients,
than income effects to the extent that the former are more closely aligned with patient preferences.

47This conclusion ignores possible heterogeneity in the costs of capacity expansion. In Supplemental
Appendix D, we incorporate such costs under additional assumptions.
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a smaller income effect will be prioritized targets of capacity expansion policies. If we

further assume the relative social values of cost and income effects, i.e., the “marginal

rate of substitution” between the two effects, then we can compare markets in terms

of the priority for capacity expansion, using an “indifference curve” of the policymaker.

We further illustrate these two ideas in Supplemental Appendix D.

Further analysis is required to inform broader policy decisions. To determine the

overall level of capacity expansion (not just where capacity expansion is prioritized), we

need various information on the costs and benefits of capacity expansion. They may

include, for example, patient preferences for and health effects of admissions initiated

by each of cost and income effects, costs of admissions and subsequent care, and public

expenditures for increasing capacity (in beds, staffing, and equipment).48 The prefer-

ences and health effects are difficult to study with the research design of this paper,

which exploits daily occupancy fluctuations in a facility-level sample. Instead, studying

preferences will require demand estimation with an episode-level sample and a method

to account for choice set restrictions (caused by providers rejecting some applications)

using only data on realized admissions. Also, health outcomes are influenced by patient

characteristics and the courses of care during an episode (e.g., care intensity affected by

congestion), so it is difficult to determine whether admissions initiated by income effects

have lower health benefits than those initiated by cost effects without an episode-level

sample. In a companion paper (Saruya and Takahashi, 2024), we study patient prefer-

ences and outcomes using an episode-level sample. That said, for more thorough analysis

of the trade-offs in healthcare capacity, understanding the conflicting supply-side incen-

tives — capacity constraints and supplier-induced demand — is essential. Our analytical

framework provides a stepping stone for further investigation of this important issue.

8 Conclusion

Researchers and policymakers have expressed concern that excess capacity leads to

wasteful care provision, while additional capacity may be valuable if valuable care is

deterred by congestion costs and capacity constraints. We develop a framework to eval-

uate the relative importance of these factors in explaining nursing facility admission

48There may also be externalities, such as the benefits to the family caregivers of the patients and
the congestion costs to patients already in facility.
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and discharge decisions. Combining the framework with Japanese long-term care claims

data, we find that a marginal reduction in occupancy from baseline leads facilities to

increase admissions, and that the admission responses are larger at higher baseline occu-

pancy, consistent with congestion costs and capacity constraints driving the admission

responses to occupancy variation. Our results have policy implications for determining

which facilities (or markets) should be prioritized for healthcare capacity assignment.

There are some interesting extensions of our study. First, the framework is based on

a static decision by a single-agent nursing facility. Dynamics and strategic interactions

are unlikely to be highly important in our setting, due to the care needs-adjusted reim-

bursement system and excess demand. Still, those factors may play some role in shaping

access to care in our setting and beyond, requiring an extension of our framework. Sec-

ond, we do not analyze care outcomes, because they are difficult to study within the

framework of this paper, as discussed in Section 7. We study the effects of congestion

on patient outcomes in a companion paper (Saruya and Takahashi, 2024).

Our conceptual framework and empirical results can serve as a stepping stone for

discussing important policy issues. First, it provides insights on the optimal capacity

regulations in health care. Despite the widespread use of policies to constrain supply

capacity with the aim of preventing wasteful service provision (e.g., CON laws in health

care) and other purposes, such policies can have an adverse effect of worsening access

to services.49 CON laws can even increase healthcare spending if capacity constraints

prevent patients from accessing necessary care, worsening their health conditions to the

point where they eventually need more intensive treatment.50 Our findings are useful

for discussing which facilities (or markets) should or should not be the target of strict

capacity regulations. As discussed in Section 7, however, determining the optimal level of

capacity regulation will require various information on the costs and benefits of capacity

expansion, which is beyond the scope of this paper. Second, if inflexible staffing is

the main source of the cost effects, then labor market reforms to enable more flexible

adjustment of staffing can mitigate the negative effect of congestion. We leave analysis

of staffing to future research.

49Mitchell (2024), based on a review of the literature on CON laws, concludes that “the data suggest
CON limits access to care.”

50CON laws have another, more oft-cited, disadvantage that they can limit provider competition
(Mitchell, 2024), which can also raise healthcare spending and worsen care outcomes.
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A Additional Figures and Tables

Figure A1: Effect of Patient Deaths on Hospitalization
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Notes: Figure A1 plots estimates of βk coefficients from Eq.(5), which is a regression of the number of
hospitalizations on the number of patient deaths, fiscal year by facility fixed effects, date fixed effects,
and other controls. The estimate of βk on the day of patient deaths is normalized to zero. Standard
errors are clustered at the municipality level, and dotted lines show the 95% confidence intervals.
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Figure A2: OLS vs IV Estimates of the Coefficient on Occupancy
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Notes: Figure A2 plots OLS (dotted curves) and IV (bold) estimates of the coefficient on occupancy
in Eq.(6) and their 95% confidence intervals, using as outcomes long-stay admissions (blue) and live
discharges (red) for the following T week(s), T = 1, ..., 12. The sign is reversed to represent the pp
effect of a 1pp reduction in occupancy. Standard errors are clustered at the municipality level.

2



Figure A3: Effect of Empty Beds on Admissions and Live Discharges, by Occupancy
Percentile
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Notes: Figure A3 plots the IV estimates of the coefficient on occupancy in Eq.(6) and their 95%
confidence intervals, using as outcomes long-stay admissions (panel (a)) or live discharges (panel (b))
for the following 1 week (blue), 4 weeks (red), and 12 weeks (orange), separately by baseline occupancy
percentile of each facility. The sign is reversed to represent the pp effect of a 1pp reduction in occupancy.
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Figure A4: Effect of Empty Beds on Admissions, By Occupancy and Care Levels (4
Weeks)
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Notes: Figure A4 plots the IV estimates of the coefficient on occupancy in Eq.(6) and their 95%
confidence intervals, using long-stay admissions in the following 4 weeks as the outcome, separately by
occupancy and care levels. The coefficients are divided by the coefficient in the baseline regression that
pools all care levels, so the numbers represent the share of each care level in the admission response.
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Figure A5: Effect of Empty Beds on Admissions, By Occupancy and Long vs. Short
Stays
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Notes: Figure A5 plots the IV estimates of the coefficient on occupancy in Eq.(6) and their 95%
confidence intervals, using as outcomes long-stay (filled circle) or short-stay (open) admissions for the
following 1 week (panel (a)) or 4 weeks (panel (b)). The coefficients are divided by the coefficient in
the baseline regression that pools both long-stay and short-stay admissions, so the numbers represent
the share of each type of admissions in the admission response.
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Figure A6: Effect of Empty Beds on Admissions and Live Discharges, by Occupancy
Level (Un-winsorized Sample)
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Notes: Figure A6 plots the IV estimates of the coefficient on occupancy in Eq.(6) and their 95%
confidence intervals, using as outcomes long-stay admissions (panel (a)) or live discharges (panel (b))
for the following 1 week (blue), 4 weeks (red), and 12 weeks (orange), separately by baseline occupancy
level. The estimation sample does not exclude facilities whose maximum occupancy rate falls in the
bottom or top 1 percentile of the distribution of maximum occupancy across providers. The sign is
reversed to represent the pp effect of a 1pp reduction in occupancy.
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Figure A7: Effect of Empty Beds on Admissions and Live Discharges, by Occupancy
Level (Occupancy ≥ 50%)
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Notes: Figure A7 plots the IV estimates of the coefficient on occupancy in Eq.(6) and their 95%
confidence intervals, using as outcomes long-stay admissions (panel (a)) or live discharges (panel (b))
for the following 1 week (blue), 4 weeks (red), and 12 weeks (orange), separately by baseline occupancy
level. The estimation sample exclude facilities whose maximum occupancy rate is lower than 50%. The
sign is reversed to represent the pp effect of a 1pp reduction in occupancy.
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Table A1: Health Status of Each Care Level

Support level 1-2 The patient is able to perform most of the basic activities of daily
living independently, but requires some assistance with complex
activities of daily living.

Care level 1 The patient’s ability to perform complex activities of daily living
has declined further from the state of Support level.

Care level 2 In addition to the condition of care level 1, the patient requires
assistance with basic activities of daily living.

Care level 3 Compared to the state of care level 2, there is a significant decline
in terms of both basic and complex activities of daily living, and
almost full nursing care is required.

Care level 4 In addition to the condition of care level 3, the patient’s ability to
move is further reduced and it becomes difficult for her to perform
daily activities without assistance.

Care level 5 The patient’s ability to perform activities of daily living is even
worse than the state of care level 4, and it is almost impossible for
the patient to perform daily activities without nursing care.

Notes: The table describes typical conditions for patients in each care level.
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Table A2: Per-diem Reimbursement

Long stay Short stay

Fixed (USD) FFS (USD) % of fixed pay Fixed (USD) FFS (USD) % of fixed pay
(1) (2) (3) (4) (5) (6)

Care level 1 78.0 10.3 88.3% 82.0 20.8 79.8%

Care level 2 83.1 10.4 88.9% 86.9 21.0 81.2%

Care level 3 89.4 10.5 89.5% 93.2 21.6 81.9%

Care level 4 95.2 10.6 90.0% 98.2 22.2 81.6%

Care level 5 101.3 10.4 90.4% 104.6 24.5 81.0%

Notes: The table presents daily averages of fixed and fee-for-service (FFS) payments in our analysis sample,
separately by care levels and long/short stays. The averages are computed through the following steps. (1) Compute
the daily averages of fixed and FFS payments within each patient-year-month-long/short bin, by computing the
total fixed and FFS payments within each bin and then dividing them by the total days of stay within the bin. (2)
Aggregate the averages to the care level-long/short level.
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Table A3: Effect of Empty Beds on Admissions, with Nonlinear Terms (Exclude full
occupancy)

Panel A: Estimates based on Occupancy Levels

1-Week Admission 4-Week Admission

Occupancy (decline) 0.731 0.282*** 0.231*** 1.089** 0.631*** 0.579***
(0.534) (0.0407) (0.0225) (0.504) (0.0473) (0.0285)

Occupancy (decline) ×

I(Occupancy≥ 95pp) 0.151 0.154
(0.140) (0.133)

I(Occupancy≥ 90pp) 0.0557*** 0.0568**
(0.0187) (0.0243)

I(Occupancy≥ 85pp) 0.0850*** 0.0868**
(0.0277) (0.0362)

Cragg-Donald F-stats 5.574 55.68 48.19 5.574 55.68 48.19

N 6,339,068 6,339,068 6,339,068 6,339,068 6,339,068 6,339,068

Panel B: Estimates based on Percentiles of Occupancy

1-Week Admission 4-Week Admission

Occupancy (decline) 0.377*** 0.321*** 0.283*** 0.617*** -0.609*** -0.594***
(0.0803) (0.0535) (0.0411) (0.0246) (0.0225) (0.0204)

Occupancy (decline) ×

I(Occupancy≥ 75pctile) 0.0258*** 0.0260***
(0.00975) (0.00832)

I(Occupancy≥ 50pctile) 0.0227*** 0.0238***
(0.00787) (0.00759)

I(Occupancy≥ 25pctile) 0.0354*** 0.0365***
(0.0120) (0.0117)

Cragg-Donald F-stats 87.50 123.3 101.6 87.50 123.3 101.6

N 6,339,068 6,339,068 6,339,068 6,339,068 6,339,068 6,339,068

Notes: Table A3 shows the estimates of the coefficients in the regression (8), excluding full occupancy.
We use 1-week or 4-week admission as the outcome and deaths in the previous 2 weeks to construct
an instrument for the interaction. The sign is reversed to represent the pp effect of a 1pp reduction in
occupancy. Standard errors clustered at the municipality level are reported in parentheses. ***p<0.01,
**p<0.05, *p<0.1.
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Table A4: Effect of Empty Beds on Admissions, with Nonlinear Terms (Un-winsorized
Sample)

Panel A: Estimates based on Occupancy Levels

1-Week Admission 4-Week Admission

Occupancy (decline) 0.327*** 0.309*** 0.274*** 0.658*** 0.642*** 0.612***
(0.0312) (0.0256) (0.0198) (0.0334) (0.0298) (0.0260)

Occupancy (decline) ×

I(Occupancy≥ 95pp) 0.0549*** 0.0487***
(0.0137) (0.0153)

I(Occupancy≥ 90pp) 0.0627*** 0.0555***
(0.0144) (0.0170)

I(Occupancy≥ 85pp) 0.116*** 0.103***
(0.0284) (0.0318)

Cragg-Donald F-stats 152.8 134.4 75.03 152.8 134.4 75.03

N 6,786,599 6,786,599 6,786,599 6,786,599 6,786,599 6,786,599

Panel B: Estimates based on Percentiles of Occupancy

1-Week Admission 4-Week Admission

Occupancy (decline) 0.330*** 0.318*** 0.299*** 0.661*** 0.650*** 0.633***
(0.0303) (0.0264) (0.0232) (0.0326) (0.0298) (0.0273)

Occupancy (decline) ×

I(Occupancy≥ 75pctile) 0.0333*** 0.0295***
(0.00792) (0.00885)

I(Occupancy≥ 50pctile) 0.0303*** 0.0269***
(0.00696) (0.00795)

I(Occupancy≥ 25pctile) 0.0463*** 0.0411***
(0.0106) (0.0122)

Cragg-Donald F-stats 239.4 290.0 210.3 239.4 290.0 210.3

N 6,786,599 6,786,599 6,786,599 6,786,599 6,786,599 6,786,599

Notes: Table A4 shows the estimates of the coefficients in the regression (8). The estimation sample
does not exclude facilities whose maximum occupancy rate falls in the bottom or top 1 percentile of
the distribution of maximum occupancy across providers. We use 1-week or 4-week admission as the
outcome and deaths in the previous 2 weeks to construct an instrument for the interaction. The sign
is reversed to represent the pp effect of a 1pp reduction in occupancy. Standard errors clustered at the
municipality level are reported in parentheses. ***p<0.01, **p<0.05, *p<0.1.
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Table A5: Effect of Empty Beds on Admissions, with Nonlinear Terms (Occupancy
≥ 50%)

Panel A: Estimates based on Occupancy Levels

1-Week Admission 4-Week Admission

Occupancy (decline) 0.306*** 0.291*** 0.260*** 0.614*** 0.602*** 0.577***
(0.0266) (0.0218) (0.0164) (0.0246) (0.0216) (0.0187)

Occupancy (decline) ×

I(Occupancy≥ 95pp) 0.0506*** 0.0404***
(0.0126) (0.0136)

I(Occupancy≥ 90pp) 0.0593*** 0.0474***
(0.0136) (0.0157)

I(Occupancy≥ 85pp) 0.107*** 0.0856***
(0.0260) (0.0284)

Cragg-Donald F-stats 143.5 119.6 69.76 143.5 119.6 69.76

N 5,657,660 5,657,660 5,657,660 5,657,660 5,657,660 5,657,660

Panel B: Estimates based on Percentiles of Occupancy

1-Week Admission 4-Week Admission

Occupancy (decline) 0.312*** 0.301*** 0.283*** 0.619*** 0.610*** 0.595***
(0.0266) (0.0234) (0.0203) (0.0250) (0.0229) (0.0206)

Occupancy (decline) ×

I(Occupancy≥ 75pctile) 0.0314*** 0.0251***
(0.00759) (0.00839)

I(Occupancy≥ 50pctile) 0.0289*** 0.0231***
(0.00678) (0.00771)

I(Occupancy≥ 25pctile) 0.0447*** 0.0358***
(0.0105) (0.0121)

Cragg-Donald F-stats 216.9 256.5 180.2 216.9 256.5 180.2

N 5,657,660 5,657,660 5,657,660 5,657,660 5,657,660 5,657,660

Notes: Table A5 shows the estimates of the coefficients in the regression (8). The estimation sample
exclude facilities whose maximum occupancy rate is lower than 50%. We use 1-week or 4-week admission
as the outcome and deaths in the previous 2 weeks to construct an instrument for the interaction. The
sign is reversed to represent the pp effect of a 1pp reduction in occupancy. Standard errors clustered at
the municipality level are reported in parentheses. ***p<0.01, **p<0.05, *p<0.1.
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B Proof

Proof of Proposition 1

Define a function

F (a, d;n) =

[
MBA(n+ a− d)−MCP (n+ a− d)−MCA(a)

MBD(n+ a− d) +MCP (n+ a− d)−MCD(d)

]
(9)

where MBA(p) = rV ′(rp) + bP + bA and MBD(p) = −rV ′(rp) − bP + bD. Note

MBA′(p)+MBD′(p) = 0, which will be used in the algebra below without a mention.

The optimal admission and discharge decisions at interior satisfy F (a∗(n), d∗(n);n) =

0. Also, the Jacobian matrix

JF (a, d;n)

=

[
MBA′(p)−MCP ′(p)−MCA′(a) −MBA′(p) +MCP ′(p)

MBD′(p) +MCP ′(p) −MBD′(p)−MCP ′(p)−MCD′(d)

]
,

where p = n + a − d, is invertible as long as MCP ′(·), MCA′(·), and MCD′(·) are

positive and −V ′′(·) is non-negative: the determinant of JF is

DJF (a, d;n)

=
(
−MBA′(p) +MCP ′(p)

) (
MCA′(a) +MCD′(d)

)
+MCA′(a)MCD′(d) > 0.

(i-a) By assumption, JF is invertible at (a, d, n) = (ā, d̄, n̄). Then, by the implicit

function theorem, we have[
∂a∗

∂n

∣∣
n=n̄

∂d∗

∂n

∣∣
n=n̄

]
= −JF (ā, d̄; n̄)

−1

[
MBA′(p̄)−MCP ′(p̄)

MBD′(p̄) +MCP ′(p̄)

]

=
−MBA′(p̄) +MCP ′(p̄)

DJF (ā, d̄; n̄)

[
−MCD′(d̄)

MCA′(ā)

]
. (10)

Thus, we have −∂a∗

∂n
> 0 and −∂d∗

∂n
< 0 at n = n̄.
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(i-b) With MCA′(ā) = κA
2 and MCD′(d̄) = κD

2 , Eq.(10) can be expressed as[
∂a∗

∂n
(n̄)

∂d∗

∂n
(n̄)

]
=

−MBA′(p̄) +MCP ′(p̄)

(−MBA′(p̄) +MCP ′(p̄)) (κA
2 + κD

2 ) + κA
2 κ

D
2

[
−κD

2

κA
2

]
.

Because we hold MCA(ā) and MCD(d̄) constant, we have ∂p̄
∂κA

2
= ∂p̄

∂κD
2
= 0.51 There-

fore, we have ∂
∂κA

2

(
−∂a∗

∂n
(n̄)

)
< 0, ∂

∂κD
2

(
−∂a∗

∂n
(n̄)

)
> 0, ∂

∂κD
2

(
∂d∗

∂n
(n̄)

)
< 0, and ∂

∂κA
2

(
∂d∗

∂n
(n̄)

)
>

0.

(ii) By Eq.(10),

−∂a∗

∂n
−

(
−∂d∗

∂n

)
=

1

1 + E(ā, d̄; n̄)

where E(a, d;n) = MCA′(a)MCD′(d)
(−MBA′(p̄)+MCP ′(p̄))(MCA′(a)+MCD′(d))

> 0. Thus, −∂a∗

∂n
−

(
−∂d∗

∂n

)
∈

(0, 1).

(iii) Let p∗ = n+ a∗ − d∗. Then,

∂

∂n

[
∂a∗

∂n
∂d∗

∂n

]
=

∂

∂n

{
−MBA′(p∗) +MCP ′(p∗)

(−MBA′(p∗) +MCP ′(p∗)) (κA
2 + κD

2 ) + κA
2 κ

D
2

[
−κD

2

κA
2

]}

=

(
1 +

∂a∗

∂n
− ∂d∗

∂n

)
× ∂

∂p

{
−MBA′(p∗) +MCP ′(p∗)

(−MBA′(p∗) +MCP ′(p∗)) (κA
2 + κD

2 ) + κA
2 κ

D
2

}[
−κD

2

κA
2

]

=

(
1 +

∂a∗

∂n
− ∂d∗

∂n

) (
−MBA′′(p∗) +MCP ′′(p∗)

)
κA
2 κ

D
2

{DJF (a
∗, d∗)}2

[
−κD

2

κA
2

]
.

Because 1 + ∂a∗

∂n
− ∂d∗

∂n
> 0 by (ii), −∂2a∗

∂n2 > 0 and ∂2d∗

∂n2 > 0 at n = n̄ if and only if

MCP ′′(p̄) > MBA′′(p̄).

Note that
∂DJF

(a∗,d∗)

∂n
=

(
1 + ∂a∗

∂n
− ∂d∗

∂n

) (
−MBA′′(p∗) +MCP ′′(p∗)

)
(κA

2 + κD
2 ),

which is positive at n = n̄ if and only if MCP ′′(p̄) > MBA′′(p̄). This, together with

(iii), establishes the statement in Section 3 that DJF increases with n if −∂2a∗

∂n2 > 0

and ∂2d∗

∂n2 > 0.

51κA
1 and κD

1 need adjusting to hold the marginal costs constant.
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Proof of Proposition 2

If κA
2 or κD

2 is positive (and the other is zero), the conclusion follows from Eq.(10). If

both are zero, Eq.(9) implies n+ a∗ − d∗ is constant, yielding the conclusion.

C Model with Heterogeneity

C.1 Setting

To illustrate how persistent heterogeneity affects the empirical application of our

theoretical framework, we consider a simple two-period extension of our baseline

model introduced in Section 3. We make the following simplifying assumptions: (1)

No discharge occurs. (2) The facility is myopic. (3) bP = bA = 0.52

Period 1. The facility chooses initial occupancy n. The utility from initially

admitting n patients is v1 = V (rn, η1)−CP (n, η1)−CA (n, ξ1, η1) ≡ V1 (rn)−CP
1 (n)−

CA
1 (n, ξ1). Utility components are similar to those defined in Section 3, but they now

have two types of heterogeneity. First, there are idiosyncratic shocks η1. Second, the

admission cost depends on persistent shocks ξ1 such that
∂MCA

1

∂ξ1
(a, ξ1) < 0 at each

a. ξ may be interpreted as supply shocks or a reduced-form expression for demand

shocks. For example, higher demand shocks attract more patients, making admission

easier.

Period 2. Given occupancy n, the facility chooses new admission a to maximize

its utility v2 = V (r(n+ a), η2) − CP (n+ a, η2) − CA (a, ξ2, η2) ≡ V2 (r(n+ a)) −
CP

2 (n+ a)− CA
2 (a, ξ2).

We assume that the solution n∗ for period 1 satisfies the first-order condition
∂v1
∂n

= 0, and that the solution a∗ for period 2 satisfies ∂v2
∂a

= 0.53 Then, based on a

linear approximation of n∗ and a∗ around a fixed value of shocks (ξ1, η1, ξ2, η2), we

obtain the following result.

Proposition 3. The following approximation holds around (ξ1, η1, ξ2, η2) = (ξ01 , η
0
1, ξ

0
2 , η

0
2),

52Alternatively, we may interpret that the per-patient altruistic utility bP is included in r.
53Given these assumptions, it is easy to show that ∂n∗

∂ξ1
> 0 holds if

∂MCA
1

∂ξ1
(·, ξ1) < 0, and that

∂a∗

∂ξ2
> 0 holds for fixed (n, ξ1) if

∂MCA
2

∂ξ2
(·, ξ2) < 0.

15



where n0 = n∗ (ξ01 , η
0
1):

Cov (a∗, n∗)

Var (n∗)
≈ ∂a∗

∂n

(
n0, ξ02 , η

0
2

)︸ ︷︷ ︸
admission response

+
∂a∗

∂ξ2

(
n0, ξ02 , η

0
2

) ∂n∗

∂ξ1

(
ξ01 , η

0
1

) Cov (ξ1, ξ2)
Var (n∗)︸ ︷︷ ︸

endogeneity bias

. (11)

C.2 Proof of Proposition 3

Approximating n∗ = n∗ (ξ1, η1) around (ξ1, η1) = (ξ01 , η
0
1), we obtain

n∗ ≈ n∗(ξ01 , η
0
1) +

∂n∗

∂ξ1

(
ξ01 , η

0
1

) (
ξ1 − ξ0

)
+

∂n∗

∂η1

(
ξ01 , η

0
1

) (
η1 − η01

)
. (12)

Similarly, approximating a∗ = a∗ (n∗ (ξ1, η1) , ξ2, η2) around (ξ1, η1, ξ2, η2) = (ξ01 , η
0
1, ξ

0
2 , η

0
2)

and letting n0 = n∗ (ξ01 , η
0
1), we obtain

a∗ ≈ a∗
(
n0, ξ02 , η

0
2

)
+

∂a∗

∂n

(
n0, ξ02 , η

0
2

) ∂n∗

∂ξ1

(
ξ01 , η

0
1

) (
ξ1 − ξ01

)
+

∂a∗

∂n

(
n0, ξ02 , η

0
2

) ∂n∗

∂η1

(
ξ01 , η

0
1

) (
η1 − η01

)
+

∂a∗

∂ξ2

(
n0, ξ02 , η

0
2

) (
ξ2 − ξ02

)
+

∂a∗

∂η2

(
n0, ξ02 , η

0
2

) (
η2 − η02

)
= a∗

(
n0, ξ02 , η

0
2

)
+

∂a∗

∂n

(
n0, ξ02 , η

0
2

){∂n∗

∂ξ1

(
ξ01 , η

0
1

) (
ξ1 − ξ01

)
+

∂n∗

∂η1

(
ξ01 , η

0
1

) (
η1 − η01

)}
+

∂a∗

∂ξ2

(
n0, ξ02 , η

0
2

) (
ξ2 − ξ02

)
+

∂a∗

∂η2

(
n0, ξ02 , η

0
2

) (
η2 − η02

)
≈ a∗

(
n0, ξ02 , η

0
2

)
+

∂a∗

∂n

(
n0, ξ02 , η

0
2

) (
n∗ − n0

)
+

∂a∗

∂ξ2

(
n0, ξ02 , η

0
2

) (
ξ2 − ξ02

)
+

∂a∗

∂η2

(
n0, ξ02 , η

0
2

) (
η2 − η02

)
. (13)
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Then, around (ξ1, η1, ξ2, η2) = (ξ01 , η
0
1, ξ

0
2 , η

0
2), we have

Cov (a∗, n∗) ≈ ∂a∗

∂n

(
n0, ξ02 , η

0
2

)
Var

(
∂n∗

∂ξ1

(
ξ01 , η

0
1

)
ξ1 +

∂n∗

∂η1

(
ξ01 , η

0
1

)
η1

)
+

∂a∗

∂ξ2

(
n0, ξ02 , η

0
2

)
Cov

(
ξ2,

∂n∗

∂ξ1

(
ξ01 , η

0
1

)
ξ1 +

∂n∗

∂η1

(
ξ01 , η

0
1

)
η1

)
+

∂a∗

∂η2

(
n0, ξ02 , η

0
2

)
Cov

(
η2,

∂n∗

∂ξ1

(
ξ01 , η

0
1

)
ξ1 +

∂n∗

∂η1

(
ξ01 , η

0
1

)
η1

)
=

∂a∗

∂n

(
n0, ξ02 , η

0
2

)
Var (n∗) +

∂a∗

∂ξ2

(
n0, ξ02 , η

0
2

) ∂n∗

∂ξ1

(
ξ01 , η

0
1

)
Cov (ξ1, ξ2) .

Thus, we have obtained the desired expression.

D Insight on Market-level Healthcare Capacity

Under some assumptions, our results can provide insights into policies on market-

level healthcare capacity. In Section 7, we outline two illustrative ideas to compare

markets in terms of the returns to a capacity expansion, which can then be used

to determine which markets should be prioritized for capacity assignment. In what

follows, we further illustrate these ideas.

Specifically, we consider hypothetical capacity expansions that reduce occupancy

rates by 1pp for all facilities in each market within the prefecture of Tokyo,54 and

discuss which market(s) should be the target of the expansion policy. Capacity ex-

pansions for existing facilities leave most demand factors (e.g., distance) unaffected,

allowing us to focus on the supply-side behavior. We focus on a single prefecture

because prefectures are the jurisdictions that issue permits for the establishment of

nursing facilities and also because facilities will be facing relatively homogeneous pa-

tient preferences and input markets within a prefecture, making cost and income

effects relatively comparable across markets.

The market-level cost and income effects are computed by summing up the facility-

level counterparts. To do so, we first assume that the income effect of a facility at

any occupancy level is equal to the admission response at the occupancy level below

54Japan consists of 47 prefectures, of which Tokyo is the largest in terms of population and
economy. Each prefecture is divided into municipalities, including cities (shi), towns (chō or machi),
and villages (son or mura).
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85%, and that the remaining part of the admission response is attributed to the cost

effect.55 Because the income effects decrease with occupancy, this amounts to setting

the (low-benefit) income effect at its upper bound and the (high-benefit) cost effect

at its lower bound, making the benefits of a capacity expansion conservative.

We first consider a capacity targeting rule by only assuming that the net social

benefit of admissions due to cost effects is positive and weakly higher than the (posi-

tive or negative) net social benefit of admissions due to income effects.56 Now, define

that Market A dominates Market B if Market A has a larger admission response and

a smaller income effect, than Market B (implying that Market A has a larger cost

effect). Compared to Market B, Market A can increase admissions more by increas-

ing high-benefit admissions while reducing low-benefit admissions. Because the net

benefits of cost effects (excluding the costs of the capacity expansion) are assumed

to be positive, Market A has a larger total benefit of a capacity expansion. More-

over, because we assume that the per-facility income effect is constant (equal to the

admission response of facilities with occupancy below 85%), Market A has a smaller

number of facilities than Market B. Thus, if we additionally assume that the cost of

the capacity expansion program is increasing in the number of facilities, then Market

A has a smaller program cost than Market B. In sum, Market A dominates Market

B if Market A offers a larger net benefit of admission responses with a lower cost of a

capacity expansion. We can then consider a non-dominance criterion, which requires

that policymakers select markets that are not dominated by any other market. The

non-dominance criterion does not assume specific values of the net benefits of the two

effects.

Figure A8a graphically illustrates the non-dominance criterion using the scatter

plots of market-level cost and income effects in Tokyo. Now, consider Market R in

Figure A8a. The red line is the “iso-quant” line of the total admission increases in

response to a 1pp capacity expansion at each existing facility, corresponding to the

same total admission increases as Market R. Then, Market R is dominated by markets

in the gray area, so it is not selected by the non-dominance criterion. Using the same

55The total admission responses are those in Figure 5a. The estimates for 95%+ are used if the
occupancy rate is equal to or greater than 95%.

56See footnote 46 in the main text for a discussion of this assumption. Also, at this point, we do
not make any assumptions on the cost of capacity expansion.
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criterion, markets shown in orange are not dominated by any other markets, making

them favorable candidates for a capacity expansion.

Next, we can further narrow down the priority markets for capacity expansion,

if we assume the relative social values of cost and income effects. Suppose that the

policymaker attaches a positive value to cost effects and a negative value to income

effects. Then, she is willing to tolerate an increase in income effects to have a 1pp

increase in cost effects. Thus, her preference is expressed by a positively sloped

indifference curve. If we assume that the trade-off rate between the two effects is

constant, then the indifference curve is represented by a straight line, and the objective

of the policymaker becomes to select the market that maximizes a weighted sum of

cost effects and income effects. We call this rule of market selection a weighted sum

criterion.

Figure A8b shows the same scatter plots as Figure A8a and illustrates the situation

where the policymaker tolerates a 0.5pp increase in admission due to income effects

to achieve a 1pp increase in admission due to cost effects. Market S in Figure A8b

maximizes the weighted sum of cost and income effects (u = 0.5 ∗ cost effects −
income effects).
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Figure A8: Visual Illustration of Capacity Assignment Rules
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Notes: Figures A8a and A8b illustrate capacity assignment rules based on the “non-dominance
criterion” and “weighted sum criterion” outlined in the text, respectively. Both figures show scatter
plots of market-level cost and income effects in Tokyo Prefecture using 1-week admission responses
to a 1pp decrease in occupancy. The size of the plot reflects the number of markets with the same
cost and income effects. In Figure A8a, the negative 45-degree line represents the combinations
of cost and income effects with the same level of total admission responses as Market R, which
is equal to 0.77. Markets in the gray area are those that dominate Market R (i.e., they have a
larger admission response and a smaller income effect than Market R). Figure A8b illustrates the
situation where the policymaker tolerates a 0.5pp increase in admission due to income effects to
achieve a 1pp increase in admission due to cost effects. The policymaker’s objective (represented by
u = 0.5 ∗ cost effects− income effects) is maximized at Market S.

20


	1 Introduction
	2 Institutional Background
	2.1 Nursing Facility Industry in Japan
	2.2 Admission, Treatment, and Discharge
	2.3 Reimbursement Policy

	3 Conceptual Framework
	3.1 Model Setup
	3.2 Theoretical Prediction
	3.3 Bounds on Cost and Income Effects
	3.4 Possible Simplifications and Extensions
	3.5 Connecting Theory to Empirics

	4 Data
	4.1 Data Sources and Sample Selection
	4.2 Summary Statistics

	5 Empirical Strategy
	5.1 Effect of Occupancy on Admissions and Discharges
	5.1.1 Event Study
	5.1.2 Instrumental Variables Estimation
	5.1.3 Effects by Baseline Occupancy

	5.2 Identification Concerns

	6 Results
	6.1 Effects of Occupancy on Admissions and Discharges
	6.1.1 Event Study Results
	6.1.2 IV and OLS Estimates

	6.2 Heterogeneous Effects by Occupancy Levels
	6.3 Occupancy and Patient Selection
	6.4 Interpretations of Admission Responses

	7 Policy Implications for Healthcare Capacity
	8 Conclusion
	A Additional Figures and Tables
	B Proof
	C Model with Heterogeneity
	C.1 Setting
	C.2 Proof of Proposition 3

	D Insight on Market-level Healthcare Capacity

